ESSENTIALS OF DRAFTING

SVENSEN

ESSENTIALS OF DRAFTING

ESSENTIALS OF DRAFTING

A TEXTBOOK ON MECHANICAL DRAWING AND MACHINE DRAWING

WITH

Abstract

CHAPTERS AND PROBLEMS ON MATERIALS STRESSES, MACHINE CONSTRUCTION AND WEIGHT ESTIMATING

BY
CARL L. SVENSEN, B.S.

assistant professor of engineering drawing in the ohio state university, Jr. mem. A.S.M.E., mem. S.P.e.e., Formerly instructor in mechanical engineering in tufts college and head of the departmemt of machine construction at the franklin union

SECOND PRINTING-CORRECTED

NEW YORK
D. VAN NOSTRAND COMPANY

25 Park Place
1919

T353

COPYRIGHT, I9I8, I9I9, BY
D. VAN NOSTRAND COMPANY

NOU - 5 I919

PREFACE

The evening technical school has been rapidly developing during recent years. From a makeshift it is coming to occupy a field distinctly its own. The ambitious man attending an evening technical school is fully the equal of his brother at the day technical school and his worth is being increasingly realized.

The foundation subjects - mathematics, mechanics, and drawing - require particular attention in evening courses, where the time may be somewhat limited and the needs of the student varied. This book has been prepared for Ohio Technical Drawing School students as part of a technical course.

Progress in engineering work of any kind depends upon an intimate knowledge of mechanical drafting as the language of the engineering world. Its possibilities must be understood. The mere drawing of lines and more or less copying of exercises or sketching from a few models is far from the purpose of a drawing course. The value of drawing as one of the working tools to be treasured and used during a lifetime in the most useful of professions, engineering, should be realized. It is as an aid in the study, and later use of engineering knowledge, that drawing finds its place. These preliminary remarks may serve to explain the makeup of the book.

The actual handling of the instruments can best be taught by careful individual instruction of each student, after which false or awkward motions should be immediately corrected. Inefficiency in this respect is one of the most severe handicaps of many "self-made" draftsmen. The treatment of the various subjects is necessarily somewhat brief, as it is intended that personal instruction should be given in each subject.

In the first studies the student is taught to represent each object in strict conformity to the laws of projection. All lines are drawn, all intersections are shown, and invisible surfaces are all
indicated by dotted lines. For simple parts such drawings are easily read and they are generally used in the drafting room. When more complicated pieces are met with or where whole machines or constructions are to be represented, such a method would lead to great confusion and often would produce a drawing which it would be almost impossible to read. The time necessary would be very great even for an expert. In such cases the full lines representing the visible surfaces are shown, but the intersections and invisible surfaces are not all drawn in. The selection of what lines to draw and what lines to leave out is an important study in itself.

Furthermore there are many representations of parts which are or appear to be violations of orthographic projection, which are used because practice has shown that they convey the idea to the workman more completely or easily. Other representations are used to save the draftsman's time, or in the interests of simplicity. Almost anything which will make a drawing more readily intelligible is justified. This statement must be used with caution, as what will seem plain to a man familiar with the work may not be so plain to the workman or other reader.

A drawing has one great purpose, and that is to be useful. To this end lines may be added or left out, shading may be used, or notes may be put on. As an expression in the engineering language each drawing should have only one meaning, and should state that meaning with the least possible chance for misinterpretation. Many of these idiomatic expressions of the engineering language will be considered in the later chapters.

The chapters on Materials and Stresses, Machine Construction, and Estimation of Weights are brief treatments of subjects which are necessary for the making of intelligent drawings. Considerable elementary machine design is included as belonging in a practical treatment of mechanical drafting, for the author does not look with favor upon fine distinctions between "subjects." It is the "usability" which really counts.

The subjects are arranged to suit the author's convenience, but they may be taken in a different order if desired. The problems are placed in one chapter at the end of the book, so that a selection may be easily made. These problems are suggestive, and may be amplified by the teacher, who should make a free use of actual shop blueprints and castings.

The author believes that the highest grade work can be done by evening school men, and in an experience of many years has always found that they are ever ready to meet the most exacting requirements when satisfied that what they are receiving is really worth while.

Appreciation of the helpful criticisms of Prof. Thos. E. French is here expressed.

CARL L. SVENSEN
Columbus, Ohio, Sept. 1, 1917.

CONTENTS

PAGE

Preface v
CHAPTER I
Drawing Instruments and Materials 1
Instruments and Materials - Use of the T Square and Triangles - Use of the Scale - Drawing Pencils - Use of the Compasses - Use of the Dividers - Use of the Ruling Pen - Character of Lines.
CHAPTER II
Lettering 7
Lettering - Gothic Letters - Proportions and Forms - Letter Spac- ing - Titles - Bill of Material.
CHAPTER III
Constructions. 13Essential Constructions - Angles - Circles - Plane Figures - ToBisect a Line - To Bisect an Angle - To Divide a Line into anyNumber of Equal Parts - To Copy an Angle - To Construct aTriangle, having given the Three Sides - To Construct an Equi-lateral Triangle - To Construct a Regular Hexagon - To Con-struct a Regular Octogon - To Draw an Arc of a Circle, having aGiven Radius, and Tangent to Two Given Lines - To Draw aCircle, Passing through any Three Points not in the same StraightLine - To find the Length of an Arc of a Circle - To Draw a Tan-gent to a Circle at any Given Point - To Draw the Arc of a Circleof given Radius, Tangent to an Arc and a Straight Line - TheEllipse - To Draw an Ellipse by the Concentric Circle Method -To draw an Ellipse by the Trammel Method - To Draw a Curvehaving the Appearance of an Ellipse by Means of Circular Arcs -The Involute - To Draw the Involute of a Triangle - To Drawthe Involute of a Circle - The Parabola - To Draw an EquilateralHyperbola.
CHAPTER IV
Projections 23
Purpose of Drawings - Orthographic Projection - The Planes of Projection - Some Rules - Dotted Lines - Auxiliary Views - Required Views - The Imaginary Cutting Plane - Representa- tion of Cut Surfaces.
PAGE
CHAPTER V
Materials and Stresses 31
Materials - Cast Iron - White Iron - Gray Iron - Properties of Cast Iron - Wrought Iron - Properties of Wrought Iron - Steel - Bessemer Process - Open Hearth Process - Properties of Steel - Malleable Iron - Suggestions for Selection of Material - Loads and Stresses - Axial Stresses - Unit Stresses - Modulus of Elasticity - Ultimate Strength - Factor of Safety - Average Values.
CHAPTER VI
Screw Threads. 40
Uses of Screw Threads - The Helix - Parts of a Screw - Right- and Left-hand Screws - Forms of Screw Threads - Multiple Threads-Split Nut and Square Thread - Conventional Repre- sentation of Screw Threads - Threaded Holes - Strength of Screw Threads.
CHAPTER VII
Bolts and Screws 48
U. S. Standard Bolts - Bolts - Studs - Threaded Holes - Machine Screws - Cap Screws - Cap Nuts - Set Screws - Locking Devices.
CHAPTER VIII
Riveting. 57
Riveting - Rivet Heads - Lap Joints - Butt Joints - Calking - Miscellaneous Connections - Rolled Steel Shapes.
CHAPTER IX
Working Drawings 62
Classes of Drawings - Special Detail Drawings - How to Make a Drawing - Tracing - Order for Inking Lines - Assembly Draw- ings - Exceptions to True Projection - Blueprints.
CHAPTER X
SEctions 71
Sectional Views - Broken and Revolved Sections - Location of Sectional Views - Objects not Sectioned - Dotted Lines on Sec- tional Views - Sections of Ribs and Symmetrical Parts.
CHAPTER XI
Dimensioning77Purpose of Dimensions - Dimension Lines - Elements of Dimen-sioning - General Rules - Systems of Dimensioning - Locationof Dimensions - Shafting - Tapers - Small Parts - Methods ofFinishing - Checking Drawings.

CHAPTER XII

Machine Construction... 87
Machine Operations - Drils - The Steam Engine Pistons -
Sliding Bearings - Wear and Pressure - Stuffing Boxes - Use-
ful Curves and Their Application - Fillets and Rounds - Arcs and
Straight Lines - Flanged Projections - Flange Edges - Flanges
and Bolting - Keys.

CHAPTER XIII

CHAPTER XIV

CHAPTER XV

$$
\begin{aligned}
& \text { Piping... } 112 \\
& \text { Piping Materials - Pipe Fittings - Standard Pipe - Pipe Threads. }
\end{aligned}
$$

CHAPTER XVI

$$
\begin{aligned}
& \text { InTERSECTIONS } \\
& \text { The Line of Intersection - Intersection of a Vertical Prism and a } \\
& \text { Horizontal Prism - Intersection of a Vertical Prism and an Inclined } \\
& \text { Prism, Visisility of Points - Intersecting Cylinders - Choice of } \\
& \text { Cutting Planes - Connecting Rod Intersection. }
\end{aligned}
$$

CHAPTER XVII

CHAPTER XVIII

[^0]
CHAPTER XIX

Shade Line Drawings... 136
Shade Lines - System in Common Use - Surface Shading - Shad-
ing Screw Threads and Gears - Special Surface Representations
— Patent Office Drawing. - Patent Office Drawing.

CHAPTER XX
Drawing Questions, Problems and Studies141
Index 181

ESSENTIALS OF DRAFTING

CHAPTER I

DRAWING INSTRUMENTS AND MATERIALS

Instruments and Materials. - Drawing instruments and materials should be selected with care, and under the guidance of an experienced draftsman or teacher. The really necessary equipment consists of the following:

Set of case instruments comprising:
6 -inch compasses with fixed needle point leg, removable pencil leg and removable pen leg,
5 -inch dividers,
5 -inch ruling pen,
Bow pencil, bow dividers, bow pen.
24-inch T square.
$16^{\prime \prime} \times 20^{\prime \prime}$ drawing board.
6 -inch 45° triangle.
10 -inch $30^{\circ} \times 60^{\circ}$ triangle.
Irregular curve.
12 -inch architect's scale.
One dozen thumb tacks.
2 H and 4 H or 6 H drawing pencils.
Drawing paper.
Erasive and cleaning rubbers.
Pencil pointer.
Black waterproof drawing ink.
Lettering pens and pen holder.
Pen wiper.
Use of the T Square and Triangle. - The T square is used for drawing horizontal lines, with the head always against the lefthand edge of the board, Fig. 1. The upper edge of the T square blade is always used, and lines are drawn from left to right. The
triangles are used for drawing all other lines. Vertical lines are drawn by placing a triangle against the upper edge of the T square and drawing upward along the vertical edge, which should be placed toward the head of the T square, as shown in Fig. 2.

Use of the Scale. - The scale is used for laying off distances. Whenever practicable, drawings should be made full size. If a

Fig. $/$

Fig. 2
reduced scale must be used to accommodate the size of paper, choose one which will show the object clearly, and which will not require great crowding of dimensions. For mechanical drafting, the architect's open divided scale, shown in Fig. 3, is most used. There are many forms, both flat and triangular in section. The following divisions are in general use, $1 / 8,1 / 4,3 / 8$, ${ }^{1} / 2,{ }^{3} / 4,1,1^{1 / 2}$, and 3 inches to the foot. The scale $3^{\prime \prime}=1^{\prime}$ means that the drawing is one fourth the size of the object, or that each

one fourth inch on the drawing represents 1 inch on the object. In this case, the 3 inches is divided up into 12 parts, each of which represents 1 inch. These parts are further divided to represent quarter inches and other fractions. The double mark (") following a figure means inch or inches; the single mark (${ }^{\prime}$) means foot or feet. A common scale graduated to $1 / 32$ of an inch may be used for many reductions. In such cases use the half inch for an inch in drawing one half size; the quarter inch for an inch in drawing one fourth size, etc. For half size one sixteenth becomes one eighth, and similarly for other divisions.

Fig. 3 shows the distance 2 feet, $5^{1 / 2}$ inches, laid off with the scale of $3^{\prime \prime}=1^{\prime}$.

Drawing Pencils. - It is necessary to have pencils of the right degree of hardness and properly sharpened. For lettering,

Fig. 4

Fig. 5

Fig. 6

Fig. 7
F.
figuring, laying out, etc., a long conical point should be used. A 2 H pencil will be found satisfactory. For the drawing itself, one 4 H pencil and one 6 H pencil, carefully sharpened, are needed. After removing the wood, Fig. 4, the lead is made slightly conical, Fig. 5, and then formed as in Fig. 6, using fine sandpaper or a
file. Fig. 7 shows enlarged side and front views of the lead. Fig. 5, and then formed as in Fig. 6, using fine sandpaper
file. Fig. 7 shows enlarged side and front views of the lead.

Use of the Compasses. - The compasses, Fig. 8, are used for drawing large circles. The needle point should be adjusted with the shoulder downward and so that the point extends about $1 / 64$ inch beyond the pen point, Fig. 9. A 4 H or 6 H lead should then be sharpened as for the drawing pencil, and placed in the pencil leg. Remove the pen point from the compasses, insert
the pencil leg, and fasten it. Then adjust the lead so that the end of it is about $1 / 64$ inch above the needle point, Fig. 10. The joints in the legs are for the purpose of keeping the point and pencil perpendicular to the paper. The compasses should be operated with one hand (the right hand). The needle point should be placed in the center, and the marking point revolved clockwise. Once around is enough, starting at the point indicated in Fig. 11.

The bow instruments are used for small circles and divisions. The method of setting the points and using is the same as for the large compasses and dividers.

Use of the Dividers. - The dividers are used for transferring distances and for dividing lines. They should be handled with

the right hand. When dividing a line, the points should be revolved in alternate directions, as indicated in Fig. 12. To divide a line into three parts, first set the dividers at a distance estimated to be about one third. Try it, and if too short, increase the distance between the divider points by one third of the remaining distance. If too long, decrease the distance between the divider points by one third of the distance which they extend beyond the end of the line. Repeat the operation if necessary.

The Use of the Ruling Pen. - The ruling pen is used for inking the straight lines, after the pencil drawing is finished. Ink is placed between the nibs of the pen by means of a quill which is attached to the ink bottle stopper. Care should be taken to prevent any ink from getting on the outside of the pen. The proper amount of ink is shown in Fig. 13. The pen should be held in a vertical position, and guided by the T square or triangle. It may be inclined slightly in the direction of the line which is
being drawn, but the point must always be kept from the angle formed by the paper and the guide. Do not hold the pen too tightly, or press against the guide. Both nibs of the pen must touch the paper. Frequent cleaning of the pen is necessary to obtain good lines. The same methods apply to the compass and bow pens.

Character of Lines. - All pencil lines should be fine, clear, and sharp. For most purposes continuous pencil lines may be used. The character and weight of ink lines for use on drawings, may be found by reference to Fig. 14.

A. Full line for representing visible surfaces.
B. Dotted line used with A for representing invisible surfaces. Dots about $1 / 16$ inch long and very close together.
C. Center line - very fine dot and dash.
D. Witness line - short dashes.
E. Dimension line - long dashes, or fine full line. D and E are often made the same.
F. Fine line for shaded drawings.
G. Dotted line for shaded drawings.
H. Shade line for shaded drawings, about three times thickness of fine line.
J. and K. for special purposes, representing conditions not specified above.
When shade lines are not used, a fairly wide line should be adopted as wearing better, and giving better blueprints. The width of line will depend somewhat upon the drawing. Large simple drawings require a wide line, while small intricate draw-
ings necessitate narrower lines. Drawings which are large and still have considerable detail in parts require more than one width of line. An experienced draftsman will use wide lines for the large and simple parts, reducing them for the complicated places in such manner that the different widths of lines are not noticeable. The student is cautioned to proceed slowly and strive for a uniform width of line until experience teaches discretion.

Center lines are drawn very fine, and are composed of dots and dashes. All symmetrical pieces should have a center line. All circles should have both horizontal and vertical center lines.
Much information concerning the many different kinds of drawing devices used by draftsmen for saving time and other purposes can be found in the catalogues of drawing material companies.

CHAPTER II

LETTERING

Lettering. - The subject of lettering in connection with working drawings is of great importance. Neat, legible letters, made free hand and with fair speed, are required. This chapter will deal with such letters. Those who wish to pursue the subject further should procure a good book on lettering, such as French \& Meiklejohn's "Essentials of Lettering," published by McGrawHill Company, New York, or Daniels' "Freehand Lettering," published by D. C. Heath \& Company, Boston, Mass. Either of these books may be obtained for $\$ 1.00$.

Great care and continual practice are necessary to do good lettering, but the appearance of neatness, the greater ease of reading, and lessened liability of mistakes, make up for the extra time and work.

Commercial Gothic Letters. - Commercial gothic and lower case letters or small letters are the forms most used by engineers and draftsmen. These are shown in Fig. 15, with the proportions and directions for drawing the various lines. The vertical capitals and lower case letters are shown in Fig. 16. The same proportions and order of strokes apply to the vertical letters. The inclined letters should have a slope of about 3 to 8 , as shown in Fig. 17. Some draftsmen use the 60° slope, but this does not give as pleasing a letter (Fig. 18).

In all cases very light pencil guide lines should be drawn to limit the tops and bottoms of the letters. The size of the letters is determined to some extent by the character of the work, but for most drawings the capitals should be $1 / 8$ inch high, and the small letters about two thirds as high (Fig. 17). For penciling use a 2 H pencil, with a well sharpened round point. For inking, a ball point pen may be used for fairly large letters, and Gillotts 404 or 303 for small letters. The pen may be dipped into the ink and the surplus shaken back into the bottle, or the quill may be used as with the ruling pen. For good work, the pen

Fig． 15
point must be kept clean，requiring frequent wiping．The pen point should be kept pointed toward the top of the paper．

Proportions and Forms．－The proportions and shapes of the various letters should be studied and drawn to a large scale． For purposes of study，the letters are divided into groups．The following points should be observed．Rounded letters，such as

LETTERING

Z

 V/

4567898
abcdefghij klmnopqrs $t \cup \vee w \times y z$

Fig. 16
C, J, O, Q, and S, may extend very slightly outside of the limiting lines. Pointed letters, like A, V, and W, may have the point extending very slightly above or below the guide lines. The horizontal bar in the letters B, E, F, H, and R is very slightly above the middle, and for the letter P it is very slightly below
the middle of the vertical height. For the letter A the bar is placed about one third the height of the letter. The letter W is wider than it is high. The two outside strokes of the M are parallel.
Letter Spacing. - The spacing between the letters when combined to form words will vary with different arrangements. The only general rule which can be given is that the area between

the letters should be about equal. A few illustrations will be given, showing the positions of some combinations of letters. When such letters as A and T, or A and V, are used, they should in general be placed close together, as in Fig. 19. A few words are shown in Fig. 20. In the lines marked wrong the letters are equal distances apart. In the lines marked right the letters are spaced so that the areas between them are about equal. The

combination of letters in each word, or the combination of words in a line, will determine the spacing of the letters.

Titles. - The matter of titles for drawings is subject to great variation. The titles for detail drawings may or may not contain the name and location of the concern. The name of the machine, its size and number, the names of the details, scale, date, and names or initials of the draftsman and engineer, should be given. An example is shown in Fig. 21. Assembly drawings generally have more elaborate titles. Good titles cannot be made by rule, though a few suggestions may be of assistance. It is often advisable to center the lines composing the title. This

RIGHT

Fig. 20
may be done by counting from each end of each line toward the center, and placing the middle letter or space on the center line. The line can then be completed by working in opposite directions from the center line. The important facts should be given due

500 GALLON STEAM JACKETED KETTLE	
SCALE E EM $=1$ Food DRAWN BY D.FA TRACED BY WV: . CHECKED BY C.S.	APPROVED Br-CLSS DARE Sept IL. 1917 REVISED Jan 4. 1919
Draw. No. 4-C-145	

Fig. 21
prominence. This may be done by using large letters, by using heavier or blacker letters, by wide spacing between letters, or by using extended letters. The element of time should be considered in the selection of letters. In general, the title should be placed in the lower right-hand corner of the drawing, and

Fig. 22
may or may not be "boxed in" (Fig. 21). Some concerns use a title extending across the end of the drawing, in which case it forms a "record strip" (Fig. 22).

Bill of Material. - A bill of material is often put upon each detail drawing in connection with the title. Sometimes a separate

PART NO	NAME OF PART	NO WANTED	MATERIAL	PATTERN NO.
1	Spindle	1	Steel	-
2	Spur Center	1	Steel	-
3	Cap Screw	4	Steel	-
4	Cone Set Screw	1	Steel	-
5	Box Pins	2	Steel	-
6	Thrust Screw	1	Steel	-
7	Clamp Screw	1	Steel	-
8	Box	2	Brass	K-45
9	Washer	1	Brass	W-133
10	Thrust Check Nut	1	Steel	-

Fig. 23
sheet is made containing a list of drawings, material, number required, pattern number, location, etc., for the entire machine or construction. Both methods may be used together. The advantages of a separate list are apparent in certain classes of machines where some drawings are used for many different machines. Bolts, pins, keys, and similar small parts are often given a number, which is used to designate them. The application and uses of lists are so varied that they must be learned for the company where one is employed. A material list is shown in Fig. 23.

CHAPTER III

CONSTRUCTIONS

Essential Constructions. - Geometry forms the basis of the constructions used in the making of drawings. A knowledge of some of the principles of geometry is therefore essential. A point indicates position in space. When a point is moved it

Fig. 24

Fig. 25

Fig. 26
generates a line, which may be either straight or curved. A surface may be formed by moving a line. A plane surface is one which will contain two intersecting straight lines. Two straight lines are said to be parallel when they are everywhere the same distance apart (Fig. 24).

Angles. - When two lines cross they form angles. The size of the angle is determined by the amount of opening between the lines. The angle A, in Fig. 25, is greater than the angle B. If the lines are revolved about their intersection, so that the angle A is made equal to the angle B, then both angles are called "right" angles (Fig. 26). The angles C and D are also right angles, so that all four angles are equal.
 As shown, each angle is one fourth the way around the point of intersection. When a right
angle is divided into 90 equal small angles, each of these small angles is called a "degree." Then it takes 4 times 90 , or 360 , degrees to go all the way around the point where the lines cross.
Circles. - A circle is a curved line formed by moving one point around another point and at a constant distance from it (Fig. 27). The curved line is called the circumference. The constant distance is called the radius, and the fixed point is called

different
Fig. 28

the center. Lines drawn from the circumference to the center form angles, which are measured in degrees. Two lines crossing each other at the center of the circle, and making equal angles with each other, form four right angles, so that a circle is said to contain 360 degrees (written 360°). A piece of the circumference is called an arc. Other features of a circle are indicated in

Fig. 27. The length of the circumference is equal to the diameter times 3.1416. (3.1416 is called " $p i$," and is often written π.)

Plane Figures. - A plane figure made up of three lines is called a triangle. There are several kinds of triangles (Fig. 28). All three angles of any kind of a triangle, when added together, are always equal to 180 degrees. The sides of the right triangle have a very useful relation to each other, which is illustrated in Fig. 28. If the length of each of the two sides is squared and added together, the sum will be equal to the square of the length of the hypotenuse; thus, in the figure,

$$
(3)^{2}+(4)^{2}=(5)^{2}
$$

or

$$
9+16=25
$$

A plane figure made up of four lines is called a quadrilateral. When the opposite sides are equal and parallel, the figure is called a parallelogram. There are several kinds (Fig. 29.)

Other regular plain figures are shown in Fig. 30.
Solids may have almost any form. The names and appearances of a number of solids are shown in Fig. 31.

There are many geometrical constructions which are of use in

Pentagon

Hexagon

Fig. 30
mechanical drawing. Detailed instructions for the solution of some of these problems follow. These problems should be studied carefully and be fully understood. They should be worked out with a very sharp pencil, fine lines, and extreme accuracy.

To bisect a Line. - (To divide a line into two equal parts): Given the line $A B$ (Fig. 32). Using points A and B as centers,

Fig. 31
and a radius greater than one half the length of the line, draw the ares 1 and 2. Through the points where these arcs cross each other, draw the line $C D$, which will divide the line $A B$ into two equal parts. The lines $C D$ and $A B$ form right angles, and are said to be perpendicular to each other. The steps used in solving this problem are illustrated in Fig. 32. Any given line is shown at a. At b is shown the given line and the arc of a circle having a radius greater than one half the line, and its center at the upper end of the line. At c another are has been drawn, having the same radius as before, but with its center at the lower end of the line. At d a line has been drawn through the intersections of the two arcs, dividing the given line into two equal parts. It is not necessary to draw the whole of the ares or the
intersecting lines. The usual appearance of the completed problem is shown at e.

To bisect an Angle (Fig. 33). - Given the angle $A O B$. With O as a center, and any radius, draw an are intersecting the sides of the angle in points 1 and 2 . With points 1 and 2 as centers, and a constant radius, draw arcs cutting each other at C. The line $O C$ will bisect the angle.
To divide a Line into Any Number of Equal Parts (Fig. 34). -

Fig. 32
Given the line $5^{\prime} B$. It is required to divide the line into five equal parts. From one end of the line draw another line, making an angle with it, such as $B 5$. On $B 5$, using any convenient setting of the dividers, step off five equal spaces. Join the end of the last space with the end of the given line. Through points $4,3,2$, and 1 draw lines parallel to $5,5^{\prime}$, intersecting the given

Fig. 33

Fig. 34

line at points $4^{\prime}, 3^{\prime}, 2^{\prime}$, and 1^{\prime}. The line $5^{\prime} B$ will then be divided into five equal parts.

Another method of dividing a line is illustrated in Fig. 35. From one end of the given line draw a perpendicular such as $5^{\prime} A$, using the triangle and T square. Next place the scale in such a position that one end of any five equal divisions is at point B, and the other is on the line $5^{\prime} A$. Mark opposite each of the divisions, and through each mark draw a vertical line intersecting the given line, which will then be divided into five equal parts.

To copy an Angle (Fig. 36). - Given the angle $A O B$. To construct another angle equal to it. Draw a line $A^{\prime} O^{\prime}$. With O as a center and any radius, draw an are cutting the sides of the
angle at 1 and C. With O^{\prime} as a center, and the same radius, draw the arc $1^{\prime} C^{\prime}$. With 1^{\prime} as a center, and a radius equal to the chord $1 C$, draw an are cutting the are $1^{\prime} C^{\prime}$ at C^{\prime}. Draw $C^{\prime} O^{\prime}$. Angle $A^{\prime} O^{\prime} B^{\prime}$ will then be equal to the angle $A O B$.
To construct a Triangle, having given the Three Sides (Fig. 37). - Given the three lines A, B, C. Draw line A^{\prime}, equal to line

A. With 1 as a center, and a radius equal to line B, draw an arc. With point 2 as a center, and a radius equal to line C, draw another are, cutting the first are at point 3 . Join point 3 with points 1 and 2 , completing the required triangle.

To construct an Equilateral Triangle (Fig. 38). - Given one side of the triangle, A. Draw line 1-2, equal in length to line A.

Fig. 39

Fig. 40

Fig. 41

With 1 and 2 as centers, and radius equal to line A, draw ares intersecting at 3 . Join point 3 with points 1 and 2, completing the required triangle.
To construct a Regular Hexagon (Fig. 39). - If the distance across corners is given, draw a circle having a radius equal to one half this distance. Draw the diameter 102. With points 1 and 2 as centers, and the same radius, draw arcs cutting the circle at points $3,5,4$, and 6 . Join these points to complete the required hexagon. It will be noted that the radius used as a chord divides the circumference into six equal parts. The $30 \times$ 60 triangle may be used to construct a hexagon. Explain how.

To construct a Regular Octagon (Fig. 40). - Given the square $1-2-3-4$. With the corners of the square as centers, and a radius equal to one half the diagonal, draw arcs cutting the sides of the square. Join the points thus found, completing the required octagon. An octagon may be constructed inside of a circle by using the 45 -degree triangle. Explain how.

To draw an Arc of a Circle, having a Given Radius, and tangent to Two Given Lines (Fig 41). - Given the lines $A B$ and $B C$ and

Fig. 42

the radius R. Draw $D E$ parallel to $B C$, and at a distance equal to R from it. Draw $F G$ parallel to $A B$, and at a distance equal to R from it. Where $D E$ and $F G$ cross, gives point O, the center of the required arc.
To draw a Circle, Passing through Any Three Points (not in the Same Straight Line) (Fig. 42). - Given points A, B, and C. Draw lines $A B$ and $B C$. Bisect lines $A B$ and $B C$, using the construction of Fig. 32. Where the bisecting lines cross at O is the center of the required circle. The radius is the distance from O to any of the three points.

To find the Length of an Arc of a Circle, and measure it on a Straight Line (Fig. 43). - First method (when angle $A O B$ is less than 60 degrees): Given arc $A B$ with center at O. From one end of the are draw the tangent line $A C$. Draw line $A B$ and extend it to D, making $A D$ equal to one half of line $A B$. With D as a center, and radius $D B$, draw arc $B C$. Then $A C$ will be a straight line equal in length to the are $A B$. Second method: Draw tangent $A C$ as before. Set the dividers at a small distance. Start at point B, and space off the points $1,2,3$, etc., along the are, until point 5 is reached. (Point 5 may come at any place near the point A.) Do not remove the dividers from the paper. Step back along the line the same number of spaces, as shown. The line $A C$ will then be very close to the length of
the arc $A B$. By taking small spaces, the chords may be assumed equal to the arcs.

To draw a Tangent to a Circle at a Given Point on the Circle (Fig. 44). - Given point P. Place one triangle with its hypotenuse passing through the given point, and the center of the circle as indicated in first position. Using the other triangle as a base, turn the first triangle over into the second position, and move it until its hypotenuse passes through point P, when the tangent

$A P$ may be drawn. The base triangle must be held firmly in place in the one position.

To draw the Arc of a Circle of Given Radius, tangent to an Arc and a Straight Line (Fig. 45). - Given arc $A B$, line $C D$ and radius R. Draw line $E F$ parallel to $C D$, and at a distance R from it. With radius $R_{2}=R_{1}+R$ and center O^{\prime}, draw an are cutting line $E F$ at O, the center of the required tangent arc. Note the points of tangency, which are marked T. The point of tangency of any two ares is always on the line joining their centers. This is further illustrated in Figs. 46 and 47 , where the points of tangency are marked T.

The Ellipse. - An ellipse (Fig. 48), is a curve formed by a point moving so that the sum of its distances from two fixed points is a constant. Each of the two points F_{1} and F_{2} is called a focus. The

Fig. 48 longest line, $A B$, drawn through the center is called the major axis. The shortest line, $C D$, is called the minor axis. The constant distance is equal to the major axis. A tangent to an ellipse at any point may be constructed by drawing lines from
the point to the foci. Extend the lines and bisect the angle $F_{1} P E$, or the angle $F_{2} P G$. This bisecting line $P H$ is the required tangent. A line through the point P and perpendicular to the tangent is called a normal. The major and minor axes
 of an ellipse being given, the foci may be located by drawing an arc with C or D as a center, and a radius equal to one half of the major axis. This are will cut the major axis at the foci.

To draw an Ellipse by the Concentric Circle Method (Fig. 49.) - Given the major and minor axes $A B$ and $C D$. With O as a center, draw circles having the major and minor axes as diameters. Draw radial lines $\operatorname{Oe} E$, OfF, etc., dividing the circles into a number of parts. Where the radial lines cut the large circle, draw perpendicular lines. Where the radial lines cut the small circle, draw horizontal lines. The intersection of a vertical and horizontal line from the same radial line will determine a point on the ellipse, as indicated at $1,2,3$, and 4 . Determine as many points as necessary, and draw the curve through them very lightly free hand. It may then be strengthened, using an irregular curve.
To draw an Ellipse by the Trammel Method (Fig. 50).-Given the major and minor axes $A B$ and $C D$. On a small strip of paper mark off one half the minor

Fig. 50 axis and one half the major axis, as shown in the figure. Place the point 3 on the minor axis and the point 2 on the major axis. Make a mark on the paper opposite the point 1. Move the point 3 along the minor axis, keeping the point 2 on the major axis and moving it as indicated by the arrows. The point 1 will then trace out the required ellipse. The usual method
is to place the trammel in a number of positions, and make marks on the paper opposite the successive positions of point 1.
To draw a Curve having the Appearance of an Ellipse, by means of Circular Arcs (Fig. 51). - Given the major and minor axes $A B$ and $C D$. On the minor axis lay off $O 3$ and $O 1$, each equal to the difference between the major and the minor axis. On the major axis lay off $O 2$ and 04 , each equal to three fourths of $O 3$. With point 1 as a center, and a radius equal to $1 C$, draw the arc $E C G$.

With 3 as a center, and the same radius, draw the arc $J D H$. With 2 and 4 as centers, and a radius equal to $2 B$, draw the ares $G B H$ and $E A J$.

The Involute. - Tie a piece of string about a lead pencil point. Place the triangular scale with its end resting upon a piece of paper. Wind the string about the scale, keeping the pencil point toward the paper. Hold the scale firmly with one hand. Keeping the string tight, and the pencil point on the paper, unwind from the scale. The curve thus formed is the involute of a triangle. The involute of any other figure may be obtained by unwinding a string from the desired form.
To draw the Involute of a Triangle (Fig. 52). - With A as a center, and AC as a radius, draw an are until it reaches the extension of side $A B$ at point 1 . With point B as a center, and $1 B$ as a radius, draw an arc from 1 until it reaches the extension of side $C B$ at point 2. The curve may be continued by increasing the radius each time that it passes the extension of one of the sides. Compare this curve with the one drawn by means of the triangular scale and string.

To draw the Involute of a Circle (Fig. 53). - Divide the are of a circle into a number of equal parts. Draw the radial lines $O A$, $O B$, etc. At the end of each radial line draw a tangent. Starting at point A, lay off the distance $A 1$ on the tangent equal to the are $A G$, using the second method of Fig. 43. Starting at B, lay off the distance $B 2$ on the tangent, equal to the arc $B A G$. Continuing, lay off on each tangent a distance from the point of tangency equal in length to the arc of the circle, measured from the point of tangency to the point G.

The Parabola. - A parabola is a curve formed by a point moving so that its distance from a line called the directrix is always equal to its distance from a point called the focus (Fig. 54). To draw a parabola, having given the directrix $C A D$, and the focus F. Draw a line parallel to the directrix, and at any distance from it. Using this distance as a radius, and F as a center, draw an arc, cutting the parallel line at point 1 . Draw as many lines as may be necessary, parallel to the directrix, and using their distances from the directrix as radii, with F as a center, draw ares cutting them, thus locating points on the required parabola.

To draw an Equilateral Hyperbola (Fig. 55). - Given the point P and the axes $G O$ and $O H$. Draw horizontal and vertical lines through point P. On each side of point P step off equal distances $P F, P A, A B$, etc. Draw lines from O to each of the points thus determined. Where line $O A$ crosses the vertical line at point a, draw a horizontal line. Through point A draw a vertical line intersecting the horizontal line just drawn at point 1 , a point on the required curve. Horizontal and vertical lines drawn from the diagonals will locate other points on the curve, as shown at $2,3,4,5$, and 6 .

CHAPTER IV

PRO JECTIONS

Purpose of Drawings. - The representation of objects and constructions having three dimensions upon a surface having two dimensions has been accomplished in many ways, some of which are illustrated in Fig. 56.

Drawings have two principal uses which are:
I. To tell the shape,
II. To tell the size.

A drawing tells the shape by the position of the various lines,

Fig. 56
while numbers are used to tell the size. These numbers are called dimensions.

Orthographic Projection. - Most engineering drawings are made in "orthographic projection." By this_means the shape and proportions of a construction may be accurately defined. The number of views depends upon the object or construction to be described. This can be understood by reference to Fig. 57, which shows two views of a cylinder. The upper view shows the circular form and the lower view shows the height of the cylinder. Notice that the diameter of the upper view is the width of the lower view, and that the two views
 are included between parallel vertical lines. An object requiring three views is shown on Fig. 58. Note the arrangement of the
views. The top and front views are included between parallel vertical lines, and the front and side views are included between parallel horizontal lines.

The Planes of Projection. - The method of obtaining the views and getting them in the correct relative positions will be

Fig. 58 explained in connection with Figs. 59 and 60 . Consider two glass planes, one horizontal and one vertical (Fig. 59), with an object placed in the angle thus formed. By looking through the vertical plane the front of the object may be seen, and if this view is marked out on the glass, it is called the front view, elevation, or vertical projection. If, instead of look-

ing through the glass, we consider that lines have been drawn from every point in the object perpendicular to the vertical plane, the object is said to be projected out to the vertical plane. The lines are called projection lines. By joining the
points in which the projection lines touch the vertical plane the front view will be obtained. In the same manner the top view, plan, or horizontal projection may be found by projecting up

Fig. 60
to the horizontal plane. If the joint between the two planes is now taken as an axis, the horizontal plane may be revolved up about the axis until it is in the same plane with the vertical plane. This brings the top view directly above the front view.
By placing a third glass plane at one side of the object, and perpendicular to the other two planes, as shown in Fig. 60, a side view may be obtained. The plane containing this side view can be revolved about the axis shown until
 it is in the same plane with the vertical plane. This brings the side view on the same line with the front view, as shown in Fig. 61, where the three views are in their correct positions.

Some Rules. - The following points should be thoroughly understood, as projection is the basis for all shop drawings.

Note the three views of the point P in Figs. 59, 60, and 61. Locate other points in the same manner until all points on the object are accounted for in each of the three views.

Horizontal distances (as L) show the same in the top and front views.

Vertical distances (as H) show the same in the front and side views.

Vertical distances (as W) in top view are horizontal distances (W) in the side view.
The top view is the same length as the front view.
The top view is the same width as the side view.
The front view is the same height as the side view.
The front of the side view is toward the front view.
The front of the top view is toward the front view.
The arrows (Fig. 61) indicate the relation of the front view to the other views.

Note the difference between the left side view and the right side view.

Lines which represent visible surfaces are full lines.
Lines which represent invisible surfaces are dotted lines. (See left side view, where it is necessary to look through the object in order to locate the horizontal dotted line.)

The top and front views of any point are always in the same perpendicular line.

The front and side views of any point are always in the same horizontal line.

Dotted Lines. - The question of dotted lines is illustrated in Fig. 62, where two views of several objects are shown. A is a square prism with a square hole all the way through; B is a cylinder with a circular hole all the way through; C is a square prism with a square hole extending from the top down to the depth shown in the front view (note that the top views of A and C are the same, and that the front views show the extent
of the holes); D is a cylinder with a hole extending up part way from the bottom, as shown in the front view, therefore the hole shows dotted in the top view; E is a square prism with a cylindrical boss on top; F is a cylinder with a smaller cylinder extending downward from the under side, thus the small cylinder is dotted in the top view; compare F and D, which show that it is necessary to read both views to determine the object. A large number of all sorts of projection problems should be solved to obtain a thorough understanding of orthographic projection.

Auxiliary Views. - The three planes just described are perpendicular to each other, like the boards coming together at the corner of a box. The faces of an object which are parallel to the three planes are projected to these planes in their true size and shape. It is often desirable to show the true shape of a face which is not parallel to any of the three regular planes. In such cases, Fig. 63, an extra plane called an auxiliary plane may be used. This extra plane is placed so as to be parallel to the inclined face. The inclined face is then projected to the auxiliary plane by perpendicular projecting lines, as shown in Fig. 63.

The distances W and S then show in their true length and the hole shows the true shape in which it cuts the inclined face. Compare the auxiliary plane with the side plane. Notice that the distance W shows in its true length in the side plane, but that the vertical dimension is H, which is shorter than S. The auxiliary
plane and the side plane may be revolved about the center line or axis until they are parallel to the plane of the paper. This has been done in Fig. 64, where the object is shown by its projections. Note the location of the points $1,2,3$, and 4 . The center
 line of the auxiliary view is parallel to the inclined face. The width W is the same in the auxiliary view and in the side view. The points $1,2,3$, and 4 are located in the auxiliary view by projecting lines perpendicular to the inclined face which cross the center line at right angles. The distances on either side of the center line are then obtained from the side view and measured on the corresponding projection lines of the auxiliary view, as illustrated for point 4.

Compare Figs. 63 and 64 carefully.
Required Views. - A bracket is shown in pictorial form in Fig. 65, together with its three views in orthographic projection. Note the relation of the views. A picture of an object is shown

in Fig. 66. Since most of its detail is inclined, a side view and auxiliary view are used. In this way true shapes are shown. Other views are not needed. They would be somewhat difficult to draw and would not add anything to what is already shown. Very good practice is to be had by deciding the number of views
and proper treatment for such machine parts and constructions as one encounters.
The Imaginary Cutting Plane. - It is not always possible to indicate easily and clearly the interior construction of a machine

Fig. 67

Fig. 69

Fig. 70

Fig. 71
different forms of section lining. Fig. 72 gives the forms suggested by a commistee of the American Society of Mechanical

Engineers. The character of sectioning should not be depended upon to tell the material. It should always be given in a note if it is not perfectly evident.

CHAPTER V

MATERIALS AND STRESSES

Materials. - Engineering constructions must carry loads and transmit motions. For such purposes various materials are made use of according to their adaptability. The most used material is iror in its different forms - cast iron; wrought iron; steel; and the steel alloys. In addition to iron there are the yellow metals, or brass and bronze compositions, white metals or babbitt, tin, lead, etc., and the various timbers.

It is important for the draftsman to know something of the properties of these materials, the methods of forming into machine parts, and the relative expense, so that a proper selection of material may be made for the particular case in hand.

Cast Iron. - Cast iron is a hard, brittle, granular substance obtained by burning the impurities from various ores. the most common being

> Magnetic Oxide, or Magnetite
> Ferric Oxide, or Red Hematite Brown Hematite Spathic Ore

Cast iron contains carbon and various impurities, such as silicon, manganese, phosphorus, sulphur, etc.

White Iron. - There are two principal kinds of cast iron: white cast iron, in which the carbon is chemically combined, and gray cast iron, in which the carbon is free or mixed in the form of graphite. White cast iron contains a small amount of carbon, and is very hard and brittle. It is used in the manufacture of wrought iron and steel. White cast iron is very difficult to machine.

Gray Iron. - Gray cast iron contains some carbon in chemical combination and a considerable amount in the form of graphite, which is mixed with the iron. Gray iron is softer than white iron and is easily machined. It contains from 0.5 per cent to 1 per cent of combined carbon up to 2 per cent.

Properties of Cast Iron. - Cast iron is the most useful of metals, as it can be readily melted and cast into any desired form by first making a mold. For this reason it is adapted for making complicated shapes. Its cheapness renders it available where

Fig. 73

Fig. 74
rigidity and weight are required. Cast iron cannot be welded and has very little elasticity, so that it is not adapted for use where shocks and sudden loads are to be cared for.

Cast iron has a crystalline structure, and when cooling the crystals form at right angles to the surface. Where square corners are encountered the arrangement is as indicated in Fig.

Fig. 75
73, in which fracture is likely to occur along $a b$, called the plane of fracture. This may be prevented by rounding, as in Fig. 74. Cast iron expands at the moment of solidifying, but shrinks upon cooling. This action sets up cooling strains in the casting, especially if there exists a considerable variation in the thickness of the section in the different parts of the piece. For this reason a uniform cooling arrangement is always desirable, and sudden changes in section should be avoided.

Cast iron is about four times as strong in compression as it is in tension.

Wrought Iron. - Wrought iron is almost pure iron, obtained by melting pig iron and squeezing out the impurities while it is in a plastic state. For such purposes a puddling furnace (Fig. 75) is used. Iron is put into the furnace and melted. When in a plastic state it is taken in the form of a ball on the end of a puddle bar and squeezed or pounded and heated again. This process is

Fig. 76
continued until most of the impurities are burned or squeezed out. It is then rolled into bars or billets. These billets are further rolled into rods of various shapes and sizes called merchant bars. This rolling process gives the iron a fibrous structure due to a certain amount of impurities which remain after the puddling. Wrought iron contains a very small amount of carbon.

Properties of Wrought Iron. - Wrought iron is malleable and is the best material to withstand shocks. It stretches and so gives warning before breaking. It cannot be cast, but must be rolled or forged into the forms required. For this reason it is not adapted for complicated shapes. It can be welded, punched, bent, etc. Owing to its method of manufacture, it is expensive
and is supplanted to a considerable extent by mild steel, which has a similar composition. Wrought iron is almost equally strong in tension and compression. It is stronger in the direction of the fibers than across them.

Steel. - Steel is made by burning carbon and impurities out of pig iron and then adding the desired amount of carbon. Another method is to add carbon to wrought iron. There are two processes of making steel from pig iron: the Bessemer process and the open-hearth process.

Bessemer Process. - In the Bessemer process from five to twenty tons of melted pig iron is put into a converter (Fig. 76). Air under a pressure of about twenty pounds per square inch is caused to pass in streams up through the metal, and the carbon and impurities are burned out. This requires about ten minutes, and leaves practically pure iron, to which the proper carbon content is added by putting in liquid spiegeleisen (white iron) or ferromanganese. This makes it into steel, which is poured into ingots. These ingots are rolled into blooms and other desired shapes.

Open-hearth Process. - By this process large amounts of steel are made at one time, generally about fifty tons. Steel, scrap, and pig iron are melted on the hearth of a Siemens regenerative furnace. The metal is kept in agitation by chemical reactions, caused by adding iron scale or scrap iron which furnish the necessary carbon.

Properties of Steel. - Steel is composed of iron and carbon in chemical combination. It has a uniform granular structure and may be formed to shape by forging, rolling, or casting. Steel varies greatly in its qualities, depending upon the carbon content. It is sometimes designated as

Soft Steel	about 0.19% carbon
Medium Steel	$" 0.30 \%$ "
Hard Steel	$" 0.75 \%$ up to 1.8% carbon

Steel having less than 0.25% is frequently called mild steel.
Malleable Iron. - Small parts of cast iron can be made less brittle by being surrounded by iron scale or some form of an oxide of iron and kept at a bright red heat for over sixty hours. In this way some of the carbon is removed and the material is made to resemble wrought iron. It is used for small pieces which
cannot be easily forged. Hardware castings, pipe fittings, etc., are often made of malleable iron.

Suggestions for Selection of Material. - The best method of learning the proper materials to be used is by observation. The material best adapted cannot always be used, because of cost, method of shaping, etc. Ask why, when a special material is used. The "factor of cost" is always present - the "factor of safety" should always be considered first. Observe broken parts of machines as a valuable means of obtaining sound information. The use of special metals is often one of trial and observation. Some things which influence the selection of material are given below:

> Method of Shaping Casting

> Cost of Pattern
> Forging - Drop Forging
> Pressing-Stamping
> Extrusion-Drawing
> Rolling
> Number Required
> Method of Finishing
> Strength Required
> Kind of Loads
> Moving or Stationary Parts
> Lightness or Weight
> Wear
> Where liquids or gases are used the chemical action must be considered.

Loads and Stresses. - The materials used in machines are subject to various loadings which must be resisted by these materials. The internal resistance must be equal to the external or applied load, or the part will fail. There are many ways of applying the load, each bringing into play a different form of resistance by the material. This resistance is called stress. Stress is a measure of the strength of the material to resist an external load. There are three kinds of simple stresses: tension, compression, and shear.

Axial Stresses. - A bar is a portion of material having a uniform section, such as a cylinder or prism. When a load is applied to a bar so as to be uniformly distributed it is called an
axial load. Such a load produces a direct stress in the bar. The section made by passing a plane at right angles to the axis of the bar is called a cross section. The area of this section is the crosssectional area and is usually spoken of as the area. It is generally measured in square inches.

When a load is applied to a bar so that it tends to lengthen the bar it produces a tensile stress (Fig. 77). When the applied load tends to shorten or compress the bar it produces a com-

Fig. 77

Fig. 78

Fig. 79
pressive stress (Fig. 78). When the applied load acts at right angles to the bar and tends to push one cross-sectional plane by another it produces a shearing stress (Fig. 79).

Unit Stresses. - In order that the strength of various materials may be compared, the strength of a bar one inch square is used as a unit. The strength of such a bar is called the unit stress, or stress per square inch of cross-sectional area. The stress is usually given in pounds per square inch. To find the unit stress, divide the applied load by the cross sectional area, or:

Let $A=$ area of cross section in square inches.
$P=$ total load in pounds.
$f=$ stress in pounds per square inch.
Then the unit stress is

$$
f=\frac{P(\text { load })}{A \text { (area })}
$$

Thus, if a rod has an area of $31 / 2$ square inches and is subject to a load of 35,000 pounds, it has a unit stress of

$$
f=\frac{P}{A}=\frac{35,000}{3.5}=10,000 \mathrm{lb} . \text { per square inch. }
$$

Elastic Limit. - From the formula given above it follows that if the load is doubled, the unit stress will also be doubled. This means that the unit stress is proportional to the load. By experiment it has been found that this law does not hold for all loads, but only up to a certain load (depending upon the material). This load or limit is called the elastic limit and is expressed in pounds per square inch. For stresses less than the elastic limit the increase or decrease in length of the bar is directly proportional to the stress. The increase or decrease in length is called the strain, and the total strain divided by the length is called the unit strain.

Let $\quad l=$ length in inches

$$
\begin{aligned}
& e=\text { change in length in inches } \\
& s=\text { unit strain }
\end{aligned}
$$

Then

$$
s=\frac{e}{l}
$$

Modulus of Elasticity. - Below the elastic limit both the unit stress and the unit strain are proportional to the load, so that they bear a constant relation to each other. This relation is expressed as the quotient obtained by dividing the unit stress by the unit strain, which will give a constant called the modulus of elasticity and represented by E.

Then

$$
E=\frac{\text { Stress }}{\text { Strain }}=\frac{f}{s}
$$

Ultimate Strength. - The formula $f=\frac{P}{A}$ gives the unit stress of a material for a given load. If the load is sufficiently large the piece will break or rupture. The value of f when rupture takes place is called the ultimate strength of the material.

Factor of Safety. - The ultimate strengths of materials as well as the elastic limits are not constants, although most of them are pretty well known from large numbers of tests. However,
it is not desirable to stress a material too near its elastic limit, as there may be imperfections or lack of uniformity. The manner in which the load is applied also affects the stress which it is safe to impose upon a given material. For this reason various "factors of safety" are used. A factor of safety is a number obtained by dividing the ultimate strength of a material by the unit stress actually imposed upon it. The actual stress is referred to as the safe working stress. Often the safe working stress is obtained by dividing the ultimate strength by a suitable factor of safety, depending upon the nature of the loading.

Average Values. - The values given in the following tables are averages and will serve for purposes of computation in the absence of more definite figures.

Elastic Limits

Material	Pounds per Square Inch	
	Tension	Compression
Cast Iron.	6000	20,000
Wrought Iron.	25,000	25,000
Steel.	35,000	35,000

Moduli of Elasticity

Material	Pounds per Square Inch
Cast Iron.	15,000,000
Wrought Iron.	27,000,000
Steel.	30,000,000

Ulimimate Strengths

Material	Pounds per Square Inch		
	Tension	Compression	Shear
Cast Iron.... Wrought Iron Steel.	$\begin{gathered} 20,000 \\ 50,000 \\ 60,000 \text { to } 100,000 \end{gathered}$	$\begin{gathered} 90,000 \\ 50,000 \\ 60,000 \text { to } 150,000 \end{gathered}$	$\begin{gathered} 18,000 \\ 40,000 \\ 50,000 \text { to } 50,000 \end{gathered}$

MATERIALS AND STRESSES
Factors of Safety

Material	Dead Load	Live Load		
		One Kind of Stress	Alternate Tension and Compression	Varying Loads. Shocks
Cast Iron.	4	6	10	15
Wrought Iron and Steel.	3	5	8	12

CHAPTER VI

SCREW THREADS

Uses of Screw Threads. - A screw is a cylindrical bar having a helical projection. The form of this helical projection varies, according to the uses to which the screw is put. Screws are used for the following purposes: To fasten parts of machines together; to transmit motion; to convert rotation into translation, or vice versa; for the adjustment of parts in their relation to one another.

The Helix. - A helix is a curve generated by a point moving equal distances lengthwise of a cylinder while it is moving equal

distances around the cylinder. If a right triangle is wound around a cylinder the hypotenuse will form a helix. The points $1,2,3,4$, etc., of Fig. 80 will come at the same numbers on the curve when the triangle is wound around the cylinder. The pitch of a helix is the distance which the point moves parallel to the axis while it goes once around the cylinder.

To draw the Projections of a Helix. - In Fig. 80 let D be the diameter and let the pitch be the distance indicated. Divide the circle shown in the top view into any convenient number of equal parts, and draw vertical lines through each point. Divide the pitch into the same number of equal parts and draw horizontal
lines. For each space around the cylinder the point will move one of the spaces along the pitch, thus locating the curve as shown.

Parts of a Screw. - A screw is known by its outside diameter,

indicated in Fig. 81 by d. The diameter d_{1} is called the root diameter. Point b is the top of the thread and point a the bottom, or root. The area corresponding to d_{1} is called the root area. One half the difference between the outside diameter and the root diameter is called the depth of the thread.
Right- and Left-hand Screws. - Screws may be either rightor left-hand. A right-hand screw thread (Fig. 93) requires the

screw to be turned in a clockwise direction to enter the nut. A left-hand screw thread (Fig. 99) must be turned counter-clockwise when entering. The pitch of a screw thread is the distance which the screw will advance for one complete turn for a single threaded screw.

Forms of Screw Threads. - The forms of screw threads are shown in the accompanying figures. Fig. 82 shows the Sellers, Franklin Institute, or U. S. Standard thread, as used quite generally in the United States. The proportions are indicated on the figures. The tops and bottoms of the V's are flattened so that the depth of the thread is decreased 0.25 the depth of the
V. The flats make the thread less liable to injury on the sharp V's and less liable to weakening at the bottom of the grooves than the sharper V thread shown in Fig. 83. This form of thread

is also in quite general use. It is conveniently formed on a lathe, and does not require a special tool, or regrinding of the tool, as is the case for the U. S. Standard. The angle for both the above forms is 60 degrees.

The Whitworth thread, or standard of Great Britain, is illustrated in Fig. 84. In this form the angle is 55 degrees. The threads are rounded off at the top and bottom, making a strong shape.

Fig. 90

Fig. 91

The forms described above are the ones most commonly used for fastening parts together.

Fig. 86 shows the square thread, a form well adapted for use in transmitting motion.

The Acme thread, a modification of the square thread, is shown in Fig. 87. The angle may be either 29 or 30 degrees. This form is used for transmitting motion. The relieving of the thread allows the use of a split nut. A common example is the
lead screw of a lathe. Fig. 88 shows the buttress or breechlock thread so called from its use in guns to take the recoil. It is designed to take pressure in one direction only. This form has the strength in shear of the V form, but avoids the tendency to

Fig. 92
split the nut. Fig. 85 shows the knuckle or rounded screw thread. This form can be cast in a mold." It is used only for rough work. Fig. 89 shows the common wood screw. An attempt is made to consider the differences in strength of the

Fig. 93

Fig. 94

Fig. 95

Fig. 96
wood and steel. For adjustment, Figs. 82, 83, 84, 86, and 87 are used. Thrust screws for pillow blocks, crossheads, etc., are familiar examples of adjusting screws.

Multiple Threads. - Screws may have either single, double, or other multiple threads. A single-threaded screw consists of a single helical projection (Fig. 90). The pitch is the distance from one thread point to the next thread point. The lead is the
distance which the screw will advance for one turn. When a large pitch is required on a small diameter, the arrangement of Fig. 91 would weaken the screw by reducing the root diameter (Fig. 91) at point A. To avoid this, two parallel helical projections may be used, as shown at B (Fig. 91). This is called a double

Fig. 98

Fig. 99

Fig. 100
thread. Similarly, a triple or quadruple thread may be formed. In this manner a large lead may be obtained without lessening the strength of the screw.

Split Nut and Square Thread. - A portion of a square threaded screw, and a section of a nut for use with it are shown in Fig. 92.

The method of drawing the helix has already been explained. Note the dotted line $a-b$, which indicates the undercutting of surface $a b c$, and shows why a split nut cannot be removed from a square threaded screw. The sloping side of the Acme thread does away with this undercutting and allows the removal of a split nut.

Conventional Representation of Screw Threads. - It is not often necessary to draw the helix in representing threads, as there are a number of conventional representations in use. Figs. 93 to 100 are common methods. Figs. 93 to 98 are for righthand threads, Figs. 99 and 100 are for left-hand threads, and Figs. 96 to 98 are for either right- or left-hand threads. It is not
generally necessary to draw the pitch to scale. The distance between lines may be estimated by eye and arranged to avoid crowding of the lines. The number of threads per inch of other than U. S. Standard should be given by note, as " 12 threads per

Fig. 104
inch, right hand." This may be abbreviated to " 12 Thds. R. H." or "12 Thds. L. H." Sometimes the number is given for U. S. Standard as indicated in Fig. 96, or the Roman numeral may be used, as in Fig. 95.

Three representations for square threads are shown in Figs. 101,

102, and 103. The square threads are generally drawn to scale, and if of large diameter the helix may be drawn in, as in Fig. 92.

Threaded Holes. - Representations for threaded holes are shown in plan, elevation, and section, in Fig. 104. It will be observed that the lines representing the threads slope in the
opposite direction when the hole is shown in section. The reason for this is that the far side of the thread is seen. As shown, either single or double circles may be used in the plan view.

When the last two forms are used they should always be marked
 "Tap" as indicated. For small diameters, the V's may be put in free hand. The lines representing the roots of the threads when visible are sometimes made heavier, but when dotted all lines should be of uniform thickness.

Strength of Screw Threads. - There are three methods of failure, shearing of threads, tension at the root of threads, and bursting of the nut.

Let $f_{s}=$ unit shearing stress in pounds per square inch.
$f_{t}=$ unit tensile stress in pounds per square inch.
$p=$ pitch in inches
$l=$ length in inches
The shearing strength of the V thread (Fig. 105) will be

$$
P_{s}=\pi d_{1} l f_{s}
$$

and for square threads (Fig. 106) having the same outside diameter and pitch

$$
P_{s}=\pi d_{2}{ }^{l} / 2 f_{s}
$$

which shows that the square thread is much weaker in shear than the V thread.

The tensile strength of the V thread (Fig. 105) will be

$$
P_{t}=1 / 4 \pi d_{1}{ }^{2} f_{t}
$$

and for the square thread, Fig. 106, having the same outside diameter and pitch

$$
P_{t}=1 / 4 \pi d_{2}^{2} f_{t}
$$

The V thread will have a considerable tendency to burst the nut, as shown in Fig. 107. As the angle between the threads decreases, this bursting tendency decreases until the square form is reached, when it becomes zero (Fig. 109).

The following tables give some desirable data concerning screw threads. Further information may be found in the handbooks published by Machinery and American Machinist.

Dimensions of U. S. Standard Threads

Diameter	Threads per Inch	Diameter of Tap Drill	Root Diameter	Root Area
1/4	20	3/16	. 185	. 026
5/16	18	$1 / 4$. 241	. 045
$3 / 8$	16	5/16	. 294	. 068
7/16	14	23/64	. 345	. 093
$1 / 2$	13	13/32	. 400	. 126
$9 / 16$	12	15/32	. 454	. 162
5/8	11	$17 / 32$. 507	. 202
$3 / 4$	10	$5 / 8$. 620	. 302
7/8	9	$3 / 4$. 731	. 420
1	8	$27 / 32$. 838	. 551
11/8	7	31/32	. 940	. 693
$11 / 4$	7	$1^{3 / 32}$	1.065	. 889
$13 / 8$	6	$1^{3} / 16$	1.159	1.054
$1^{1 / 2}$	6	$1^{5 / 16}$	1.284	1.293
$15 / 8$	$5^{1 / 2}$	$1{ }^{13 / 32}$	1.389	1.515
$1^{3 / 4}$	5	$1{ }^{1 / 2}$	1.491	1.744
$17 / 8$	5	$15 / 8$	1.616	2.049
2	$4^{1 / 2}$	$1^{3 / 4}$	1.711	2.300

Tensile Strength of U. S. Standard Screw Threads

Diameter	Threads per Inch	Total Strength of One Bolt for Unit Stresses of		
		4000	5000	6000
$1 / 4$	20	105	135	160
$3 / 8$	16	270	340	405
$1 / 2$	13	500	625	750
$5 / 8$	11	805	1010	1210
$3 / 4$	10	1200	1500	1800
$7 / 8$	9	1680	2100	2520
$1^{7 / 8}$	8	2200	2750	3300
$1^{1 / 8}$	7	2770	3460	4160
$1^{1 / 4}$	7	3120	3900	4680
$1^{1 / 3}$	6	4240	5300	6360
$1^{1 / 2}$	6	5120	6400	7680
$1^{1 / 2} / 8$	$5^{1 / 2}$	6120	7650	9180
$1^{1 / 4}$	5	7040	8800	10560
$\mathbf{1}^{1 / 3}$	5	8120	10150	12180
2	$4^{1 / 2}$	9200	11500	13800

CHAPTER VII

BOLTS AND SCREWS

The most common fastening for holding parts of machines together is some form of bolt or screw. There is a great variety of forms, many of which are shown in this chapter.
U. S. Standard Bolts. - Figs. 110 and 111 show the proportions of the U. S. Standard hexagonal bolt head and nut. As indicated, there are two general forms, chamferred (Fig. 110) and rounded (Fig. 111). The same proportions hold for both types. The rounded type is used when the parts to be bolted together are nicely finished. The distance across flats W is made equal to one and one half times the diameter, plus one eighth inch, or

$$
W=1^{1} / 2 d+1 / 8^{\prime \prime}
$$

The thickness of the bolt head is made equal to one half the distance across flats, or

$$
T=3 / 4 d+1 / 16^{\prime \prime}
$$

The thickness of the nut is made equal to the diameter in all cases. These same formulae hold good for both the hexagonal and square forms. Fig. 112 shows the square form.

The radii for the various arcs are shown on the figures, and when not given in terms of the diameter are obtained from the construction, as indicated. The distance across corners is generally found by construction, as indicated in Fig. 110, by drawing a line $x y$ at 30 degrees with the base of the head.
$x-z=$ one half distance across flats
$x-y=$ one half distance across corners

It should be noted that the radii R and R_{1} of Fig. 111, are both drawn from the same center. The length of the radius R_{1} is found by construction when drawing the bolt head or nut. When

heads or nuts are finished or machined, the distance across flats is often made ${ }^{1 / 16}$ inch smaller than standard, in which case

$$
W=1^{1} / 2 d+1 / 16^{\prime \prime}
$$

The proportions of bolt heads and nuts are collected in the following list, which also gives some approximate values to be used when drawing to small scale, or where exact size is not important.

		Exact	Approximate	
Diameter of bolt.... Distance across flats.	d W	$\begin{gathered} d \\ 3 / 2 d+{ }^{1 / 8^{\prime \prime}} \end{gathered}$	$\begin{gathered} d \\ 13 \end{gathered}$	d
Thickness of bolt head.	T	$3 / 4 d+1 / 16^{\prime \prime}=\frac{W}{2}$	$7 / 8 d$	
(Hex.) distance across corners Thickness of nut.	C_{B}	$1.155 \mathrm{~W}$	$1^{3} / 4 d+1 / 8$ d	$\begin{gathered} 2 d \\ d \end{gathered}$
(Square) distance across corners	$C_{\text {s }}$	1.414 W		

Bolts. - A through bolt is one which extends through two pieces, and carries a nut, as shown in Fig. 113. Care must be taken to allow sufficient thread to insure the two pieces being held firmly together. For this reason, the distance from the end of

the thread at A to the under side of the head B must be less than the thickness of the two flanges. Since the bolt head and nut are standard only three dimensions are necessary when specifying a bolt. These are, diameter, length from under side of head to end of bolt, and length of thread measured from the end of the bolt.

A tap bolt is a bolt which makes use of a part of the machine to take the place of a nut, as shown in Fig. 114. To be sure that the two pieces will be held firmly together, the distance $A B$ must be less than the thickness of the flange.

Studs. - A stud bolt or stud is a cylindrical bar having threads on both ends (Fig. 115). Studs are used when there is not room enough for through bolts, and where there is danger of a tap bolt rusting in. Cylinder heads for steam or water machinery are familiar examples. In such cases the heads have to be taken off frequently, and if tap bolts were used, the threads might rust in, and break when an attempt to remove them was made. If successfully removed several times, the thread would be worn so as to become loose and render the keeping of a tight joint difficult. When a stud is put in place it becomes part of the casting, and the wear then comes on the nut and stud, both of which are made of

Fig. $1 / 6$ wrought iron. The material will stand the wear much better than cast iron. A small amount of oil on the outer end of the stud will prevent the nut from rusting on.

Threaded Holes. - Holes for bolts and studs are generally threaded by using taps. Machinist taps come in sets of three,

designated as taper, plug, and bottoming taps (Fig. 116). The operation is as follows: First a hole is made with a drill having a diameter about equal to the root diameter of the screw. Such a drill is called a tap drill. The thread is then cut by inserting and turning in the taps illustrated, and in the order given. The use of the bottoming tap is often omitted, as it is seldom necessary to have threads to the very bottom of the hole (the reader is referred to catalogs of machinists' tools for further informa-
tion). Unless it is desired to have a stud jam at the bottom of a hole, clearance, $C D$, should be allowed, as shown in Fig. 117. The depth of the hole is ti.e distance $A B$. If necessary the

thread may be carried to the bottom of the hole and even the drill point may be ground off so that a flat bottom hole may be obtained as in Fig. 118. This will prevent the drill from pointing or breaking through, as indicated by the dotted lines. A better

Fig. 122

D	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{7}{8}$	1
H	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{7}{8}$	1	$1 \frac{1}{8}$	$1 \frac{1}{4}$
S	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{7}{8}$	$1 \frac{1}{8}$	$1 \frac{1}{4}$

method is to put a boss on the casting opposite the hole, and then use a regular drill and plug tap (Fig. 119).

Machine Screws. - Small screws are made with a variety of forms of heads. They are especially adapted for use with small parts of machines. Fig. 120 shows the various forms of heads, and the proportions as recommended by the American Society of Mechanical Engineers. The sizes of machine screws are
designated by numbers. Diameters range from .060 inches to .450 inches.
Cap Screws. - For many purposes bolts having different dimensions from the U. S. Standard are desirable. Hexagonal and square cap screws are shown in Figs. 121 and 122. The distance across flats is less than the U. S. Standard, and the thickness is greater. Cap screws are also made with heads similar to those shown for machine screws. Cap screws are designated by their diameter in inches. The diameters are in even fractions of an inch, starting at ${ }^{1} / 4^{\prime \prime}$.

Cap Nuts. - Where an especially finished appearance is desired, cap nuts may be used to conceal the ends of studs. They are frequently seen on polished cyl-

inder heads, and similar places. Several forms of cap nuts are shown in Figs. 123, 124, and 125.

Set Screws. - For holding pulleys on shafts, and otherwise preventing relative motion, set screws may be used. Several forms are illustrated. Any combination of point and head may

be obtained. Some proportions are shown in Figs. 126 to 131. A projecting set screw on a revolving pulley is a source of great danger, and should be avoided. The many forms of headless and hollow set screws on the market render the use of other forms unnecessary in such cases.

The relative holding power of the different forms of ends of set screw are given by Professor Lanza in the A. S. M. E. "Transactions," Volume 10. Average results of tests on four kinds are as follows:
A. Flat end, $9 / 16$ inch diameter, 2064 pounds
B. End rounded, $1 / 2$ inch radius, 2912 pounds
C. End rounded, $1 / 4$ inch radius, 2573 pounds
D. Cup shaped end, 2470 pounds

The set screws were all $5 / 8$ inches in diameter, and were tightened with a pull of 75 pounds on a 12 inch wrench.

Locking Devices. - The vibration of machinery often causes nuts to become loose if they are not provided with some form of locking device. The commonest method is to use two nuts. They may be full size, or one of the arrangements shown in Fig.

132. The castle nut illustrated forms a good method. Lock washers consisting of a piece of sheet metal are effective. One corner is turned down, and another corner is turned up, as illustrated.

The following table gives the dimensions for U. S. Standard bolt heads and nuts.

${ }_{d}$ Diameter of Bolt	W Flats or Short Diameter		Thickness of Nut	T Thickness of Bolt Head	Cs Corners or Long Diameter
1/4	$1 / 2$	37/64	1/4	$1 / 4$	23/32
5/16	19/32	11/16	5/16	19/64	27/32
$3 / 8$	11/16	$51 / 64$	$3 / 8$	11/32	31/32
7/16	$25 / 32$	29/32	7/16	25/64	$1^{7 / 64}$
$1 / 2$	$7 / 8$	$1^{1 / 64}$	$1 / 2$	7/16	$1{ }^{1 / 4}$
$9 / 16$	31/32	$11 / 8$	$9 / 16$	$31 / 64$	$1^{3 / 8}$
$5 / 8$	$1^{1 / 16}$	$1^{15} / 64$	$5 / 8$	${ }^{17} / 32$	$1{ }^{1 / 2}$
$3 / 4$	$1^{1 / 4}$	129/64	$3 / 4$	$5 / 8$	$13 / 4$
$7 / 8$	$1^{7} / 16$	$143 / 64$	7/8	$23 / 32$	$2^{1 / 32}$
1	$1^{5 / 8}$	$1^{7 / 8}$	1	13/16	$2^{5} / 8$
$1^{1 / 8}$	$1^{13} / 16$	$2^{3} / 32$	$1^{1 / 8}$	29/32	$2^{9} / 16$
$1^{1 / 4}$	2	$2^{5} / 16$	$1^{1 / 4}$	1	$2^{53} / 64$
$13 / 8$	$2^{3 / 16}$	$2^{17} / 32$	$1^{3 / 8}$	$1^{3} / 32$	$3^{3} / 32$
$11 / 2$	$2^{3 / 8}$	$2^{3 / 4}$	$1^{1 / 2}$	$1^{3} / 16$	$3^{23} / 64$
$15 / 8$	29/16	$2^{15} / 16$	$15 / 8$	$19 / 32$	$3^{5 / 8}$
$1^{3 / 4}$	$2^{3 / 4}$	$3^{3 / 16}$	$13 / 4$	$13 / 8$	$357 / 64$
$17 / 8$	$2^{15} / 16$	$3^{13} / 32$	$1^{7 / 8}$	$1^{15 / 32}$	$4^{3 / 16}$
2	$3^{1 / 8}$	$35 / 8$	2	$19 / 16$	$4^{27 / 64}$

Depth of Tapped Holes and Distance for Screw to Enter

Diameter of Screw	$\underset{\substack{\text { Diameter } \\ \text { of Tap } \\ \text { Drill }}}{ }$	B Depth of Hole	$\begin{gathered} C \\ \text { Allowance } \\ \text { for } \\ \text { Drill Point } \end{gathered}$	A Distance for Screw to Enter
1/4	$13 / 64$	7/16	1/16	$3 / 8$
5/16	17/32	9/16	5/64	7/16
$3 / 8$	$5 / 16$	11/16	3/32	9/16
7/16	$3 / 8$	$3 / 4$	7/64	$5 / 8$
1/2	27/64	13/16	$1 / 8$	11/16
$9 / 16$	31/64	15/16	9/64	13/16
5/8	17/32	1	$5 / 32$	$7 / 8$
$3 / 4$	$41 / 64$	$1{ }^{1 / 4}$	3/16	1
7/8	$3 / 4$	$11 / 2$	$7 / 32$	$1^{1 / 4}$
1	55/64	$1^{5} / 8$	$1 / 4$	$1^{3 / 3}$
$11 / 8$	61/64	$1^{3 / 4}$	$9 / 32$	$11 / 2$
$1^{1 / 4}$	$1^{5 / 64}$	2	5/16	$13 / 4$
$1^{3 / 8}$	$1^{11 / 64}$	$2^{1 / 4}$	11/32	$1^{7 / 8}$
$11 / 2$	$1^{19 / 64}$	$2^{1 / 2}$	$3 / 8$	$2^{1 / 8}$
$15 / 8$	$1^{13 / 32}$	$2^{5} / 8$	13/32	$2^{1 / 4}$
$1^{3 / 4}$	$11 / 2$	$2^{3 / 4}$	$7 / 16$	$2^{3 / 8}$
$1^{7 / 8}$	$15 / 8$	3	15/32	$25 / 8$
2	$13 / 32$	$31 / 8$	1/2	$2^{3 / 4}$

CHAPTER VIII

RIVETING

Riveting. - Since machines and structures cannot be made in one piece some means of fastening the parts together must be used. For many purposes where a permanent fastening is required, rivets are used. A rivet is a bar of metal having a head made on one end and a length sufficient to allow forming a head on the other end after being put into place. The holes for rivets may be either punched or drilled. As punching injures the metal, drilled holes are better for boiler or other pressure work.

Fig. 133

Fig. 134

Fig. 135

Holes are made $1 / 16$ inch larger diameter than the rivets used in them. Thus a one-inch rivet is ${ }^{15} / 16$ inch diameter before driving.

The computations for pitch and efficiency of joints, matters relating to design, are beyond the scope of this work, but the following articles will suffice for drawing purposes.

Rivet Heads. - The forms of rivet heads are shown in Figs. 133, 134, and 135 . The countersunk head and the button head are illustrated in Fig. 133. These forms are used for structural work. For pressure work the cone head or pan head of Fig. 134 may be used, or the common form of Fig. 135.

Lap Joints. - When two plates lap over each other and are held by a row of rivets as in Fig. 136 it is called a single riveted lap joint. A double riveted lap joint is shown in Fig. 137. The distance between the centers of two rivets in the same row is
called the pitch. The distance from the center line of the rivets to the edge of the plate is called the lap. The lap is commonly made equal to one and one half times the diameter of the rivet.

The distance from the center of a rivet in one line to the center of a rivet in the next line is called the diagonal pitch and may be found from the formula:

$$
P^{\prime}=2 / 3 P+\frac{d}{3}
$$

Either chain riveting (Fig. 138) or staggered riveting (Fig. 139) may be used when there are several rows of rivets.

Fig. 138

Fig. 139

Butt Joints. - Three forms of butt joints are shown in Figs. 140, 141, and 142. In Fig. 140 a single butt-strap having a thickness of about one and one fourth times the thickness of the plates
may be used. Figs. 141 and 142 show single and double riveted butt joints with two butt-straps. In such cases the butt-straps may be $1 / 16$ inch thinner than the plates.

When three plates come together they must be arranged so

Section A-A

as to maintain a tight joint. One method used is shown in Fig. 143. In order to obtain a fit one of the plates must be thinned out.
Calking. - For many purposes rivets must make a leak tight joint as well as hold the plates together. To assist in this a
blunt chisel is used to force or pound the edge of the plate down. This is called calking and makes a water or steam tight joint

Fig. 144

Fig. 145

Fig. 146

Fig. 147
between the plates. The bevel of about 75° shown is to make the calking easier.

Miscellaneous Connections. - Some miscellaneous connections are shown in Figs. 144 to 147. Angles may be used as in Figs.

144 and 147 or one of the plates may be bent as in Figs. 145 and 146. In this case the radius of curvature (r) may be about two and one half times the thickness of the plate. Also note that a short straight part (x) should be provided to allow easy calking

(Fig. 145). When drawing to a small scale thin sections are sometimes blacked in as shown in Figs. 148 and 149, which also illustrate methods of closing the ends of cylindrical tanks. With rounded ends the radius of curvature may be taken equal to the diameter of the tank.

Rolled Steel Shapes. - For many constructions, rolled steel shapes are used. The dimensions and weights as well as other properties can best be obtained from the handbooks issued by

the steel companies. The names of a few of the common sections are given in connection with Fig. 150.

The pitch of rivets for structural purposes may be taken at from three to six inches. The distance from the center of the rivet to the edge of the plate should generally be about two times the rivet diameter. The pitch for various sizes of rivets may be taken from the table given below.

MINIMUM RIVET SPACING

Diameter of Rivet	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{7}{8}$	1
Pitch	$\frac{3}{4}$	$1 \frac{1}{8}$	$1 \frac{1}{2}$	$1 \frac{7}{8}$	$2 \frac{1}{4}$	$2 \frac{5}{8}$	3

The Osborn system of conventional representation for rivets is shown in Fig. 151.

CHAPTER IX

WORKING DRAWINGS

Classes of Drawings. - The origin of a drawing is of interest, and a knowledge of how drawings are produced is essential. Roughly drawings may be divided into two classes; detail drawings and assembly drawings. These names are sufficiently descriptive in a general way. Drawings are sometimes made from a machine or part by measuring and sketching. The usual source of a detail drawing is the designer's board. Here the whole machine is laid out to scale in a more or less complete manner, the relation of one part to another is shown, and such fixed dimensions as are necessary are determined. The shapes of the various parts as required for strength and motion are worked out and drawn. From such drawings the detail draftsman works and finishes the drawings of the separate parts.

A detail drawing shows each piece separately and completely defines it (Fig. 152). The number of views is determined by what is necessary to show the shape and size of the object. A pin, shaft, or bolt can generally be shown in one view, while a casting may require two, three, or more views together with sectional and auxiliary views. The main views should always be arranged in strict conformity to the rules of projection. The third quadrant is used exclusively for this purpose. Auxiliary views and sections may be placed in other positions but explanatory notes should always be used to define them as explained in Chapter X.

The size of paper and the scales to use have been treated in other chapters. Use a scale that will show the object clearly and that will not require crowding of the dimensions. In general it is better not to use more than one scale on the same sheet. To this end large and small pieces would not be put on the same shect. There are many concerns where each part is drawn on a sheet by itself. The character of the work will determine the practice in this respect.

It is generally well to draw large castings separately and to group small parts together as:

Small Castings,
Bronze and Composition Castings,
Forgings,
Bolts and Screws.

Fig. 152
Special Detail Drawings. - Special detail drawings are sometimes made for the different classes of workmen. These might be classed as follows:

Pattern Drawings, Forging Drawings, Machinist's Drawings, Stock Drawings.

There are many advantages to this system where a large number of parts are made as each workman is given only such information as concerns him. As pattern dimensions are used only when the pattern is made or for alterations they complicate the drawing and can better be left off the machinist's drawing. One method is to put the pattern dimensions and information on the tracing in pencil, make several blueprints, and erase the pencil

information from the tracing. Gasolene applied with a soft cloth is excellent for this purpose. For forgings two separate drawings will be necessary, one for the blacksmith and one for the machinist. The saving in time will make up for the expense of the extra drawing in most cases.

How to make a Drawing. - A detail drawing is started by first locating the main center lines as shown in Fig. 153 for the necessary views. Next "block in" the fixed dimensions in all views and from them work out the shape of the object. The small circles, fillets, etc. should be drawn last. Figs. 153 to 158 show the drawing for a slide valve in the various stages of making.

After completing the drawing in pencil it is ready to be inked on paper or traced.

Tracing. - Most drawings are now inked on tracing cloth. This is a translucent linen cloth. There are many grades, some nearly transparent. One side of the cloth is generally shiny or glazed and the other dull. Either side may be used but the dull side is to be preferred. The cloth is tacked down over the pencil drawing and the lines inked in as though they were on the cloth. The surface of the cloth should be rubbed over with powdered chalk and then the chalk thoroughly removed. A clean blotter will serve the same purpose. The fine thread running at the edges of the cloth should be torn off before using to prevent wrinkling. As the cloth is absorbent it should be protected from moisture.

Order for inking Lines. - The weight of line to be used has been discussed in the first chapter. First ink the center lines using a fine dot and dash line. The order of inking then is:

1. Small circular arcs and circles.
2. Large circular arcs and circles.
3. Irregular curved lines.
4. Straight horizontal lines.
5. Straight vertical lines.
6. Dotted circular arcs.
7. Dotted lines.
8. Witness and dimension lines.
9. Dimensions, notes, title.
10. Section lining.

When a large or complicated drawing is to be inked it is advisable to ink one view at a time or to start only so much as can be completed on the same day. If a view is left uncompleted it will generally be found very difficult to join the various lines, because the cloth is very sensitive to atmospheric changes which cause it to stretch.

Assembly Drawings. - An assembly drawing shows the parts of a machine in their proper relation to one another. There are many kinds of assembly drawings, some of which will be described.

An Outline or Setting drawing is frequently made to show the appearance of the machine, give center distances, and overall dimensions. Such drawings are used to illustrate the machine to prospective customers, to lay out the foundation, and for locat-

Fig. 159
ing the machine in its building. Fig. 159 shows one form of such a drawing.

An Assembly Working Drawing is often made when only a few of the machines are to be constructed. Such a drawing might contain a number of part views or sections. It would be completely dimensioned so that no separate or detail drawings would be required. Fig. 175 shows such a drawing.

Part Assembly Drawings are sometimes made giving a few pieces in their proper relation to each other and either partly or completely dimensioned. When completely dimensioned no further detail drawings are made.

Assembly drawings made to show the sizes, location, and method of fastening pipes and wires are called piping or wiring diagrams or drawings, depending upon how completely they are figured.

Erection Drawings are an important class of assembly drawings. They show the proper order of putting the parts together, dimen-

Fig. 160
sions, such as center distances, which must be exact, give the location of oil holes, valves, switches, etc., and methods of making adjustments.

Diagram Drawings are used by many concerns. These comprise a sectional or external view of the whole of the machine upon which the parts can be numbered or named. Such a drawing frequently contains a list of the parts, drawing numbers, pattern numbers, materials, weight, and other information.

Outline drawings are often used for catalogs, advertising, and similar purposes. Some of the points to be considered are given

Fig. 161

Fig. 162

Fig. 163
in the following list. The one upon which emphasis must be put will depend upon the use to which the drawing is to be put.

1. Get the important points.
2. Sense of proportion.
3. Suggestion.
4. Simplicity (few lines).
5. Record peculiarities in shape or design.
6. Use notes if necessary.
7. Number of machine.
8. Name of manufacturer.
9. Trade names.
10. Use of shading.
11. Not necessarily to scale.

Show Drawings are sometimes made. These are often in the nature of a picture in which the center lines and dimensions are left off (Fig. 160). Line shading as explained in a later chapter is often used. A good effect may sometimes be obtained by mass shading with a soft pencil, using the dull side of the tracing cloth. For more particular work on paper, india ink tinting applied with a brush can be used.

Exceptions to True Projection. - There are many cases where true projection is departed from in the interests of simplicity and clearness. Figs. 161, 162, and 163 show a few cases. The slot in the screw is drawn at 45° in the top view but is not projected

to the elevation. The same practice is followed for holes and pins. The location of bolt holes is another illustration. The front view of Fig. 164 shows the true projection of the bolt holes. The front view of Fig. 165 shows the preferable method which

Fig 167

locates the centers of the bolt holes at a distance apart equal to the diameter of the circle of drilling. In such cases the other holes need not be projected as they add nothing to the information conveyed by the drawing. When holes are drilled as in Fig. 165 they are said to be "Two Up" or off centers, and when located as in Fig. 166 they are said to be "One Up" or on centers. Pipe flanges on elbows and fittings are usually drilled "Two Up" and
with four, eight, or some multiple of four holes, so that the flanges can be turned at right angles.

Other exceptions to true projection are discussed in the chapter on sections.

Blueprints. - The object of making tracings is to provide a convenient means for obtaining several copies of the original drawing. The most common method is by the blueprinting process. Blueprint paper is paper which has been coated with iron salts which are sensitive to light. The method of making blueprints is as follows:

Place the tracing with the right side or inked side next to the glass of a printing frame as shown in Fig. 167. Next place a piece of blueprint paper on the tracing with the coated side down. Follow this with the felt pad and close the frame. Expose to the direct sunlight as indicated in Fig. 168. The length of the exposure varies from 30 seconds in strong sunlight with rapid printing paper to three or four minutes under the same conditions with slow printing paper. The time can best be found by trial, as the age of the paper and the brightness of the light all exert an influence. After exposing, the paper should be removed and thoroughly washed. The excess water may be blotted off and the print hung up to dry. New paper has a yellow color on the coated side. After exposure this changes to a gray-bronze except where the lines of the tracing prevent the light from reaching it.

Electric light is very generally used in the larger mechanical factories for making blueprints. Machines for this purpose as well as many other methods of duplication are described in drawing supply catalogs to which the reader is referred.

CHAPTER X

SECTIONS

Sectional Views. - Probably the most useful form of conventional representation is the sectional view obtained by an

Fig. 169
imaginary cutting plane described in Chapter IV. Free use of sections often saves much time as well as possibility of mistakes in reading drawings for constructions which have complicated

Fig. 170

Fig. 171

Fig. 172
cores. The choice of views should be made with care and for a definite purpose, never for appearances. There are many special sections, some of which are described in this chapter. An article
by the author, "Sections of Ribs and Symmetrical Parts," in "Machinery," June, 1915, gives further applications.
Broken and Revolved Sections. - When a long piece of uniform cross section is to be represented, a larger scale can be used

Fig. 173
by "breaking" the piece. The manner of breaking generally indicates the form of cross section and material as in Fig. 169. The break is made free hand but should be carefully done. The two sides should appear to match, that is, if the sectioning comes on the upper side of one half it should come on the lower side of

Fig. 174
the other. A similar method of "set in" sections is often used for such conditions as are present with wrench handles, pulley arms, brackets, hand wheels, and rods. Figs. 170 to 173 show some examples.

Location of Sectional Views. - When conditions permit, sectional views should be placed according to the laws of projection

as explained in Chapter IV, and are drawn in the same manner as the other views by assuming a part of the machine or parts to have been removed. When many sections are required or other
reasons make it necessary to place the sectional viers in another location, arrows and notes should be used to explain them as shown in Fig. 174.
 Extra sectional views are often very useful in explaining parts of a machine or details of a part.

Since the cutting plane is imaginary it need not be continuous; thus several sections may be used and the views represented as though occurring on a single plane. This is illustrated in Fig. 175, where the cutting plane is changed as shown in the top view. Thus the front section is taken on the plane A, B, C, D, E, F, and the side section on a plane through the center.
Objects not Sectioned. - When a full view will serve the same purpose just as well a sectional view should not be used. This is true in the case of shafts, bolts, nuts, screws, rivets, keys, pulley

arms, ctc., which are very seldom drawn in section except when the cutting plane is at right angles to the long dimension. This treatment of a section is shown in Fig. 176.

Dotted Lines on Sectional Views. - Very often a sectional view contains only the outline of the sectioned surfaces and the full lines which appear. How much of the part behind the plane

Fig. 179 Fig. 180 Fig. 181
of the section should be represented must be determined for each particular case. When an object is represented by a view made up of one half in section and one half exterior most or all of the

Fig. 182
dotted lines may be omitted from both halves, as was done in Fig. 175.

Sections of Ribs and Symmetrical Parts. - Ribs, arms, and gear teeth are not ordinarily sectioned even though they appear
on the plane of the section. Figs. 177 and 178 illustrate such cases. In Fig. 177 the plane $M N$ passes through the ribs, but is not sectioned in the other view as it would give a false impression of solidity. In Fig. 178 the true projection without sectioning the rib is shown at A, while the usual conventional section is shown at B.

The representation of a cylinder head in Figs. 179, 180, and 181, shows a similar case. A true section on the plane $A B$ is given in Fig. 179. In Fig. 180 the section is taken on $C D$ and revolved into the position of $A B$. The bolt holes and lugs are then located at their true distances from the center. By this means one view could be made to represent the cylinder head by adding a note to give the number of lugs. An alternate method is shown in Fig. 181, where the section $F E$ is revolved. The idea in all cases is to avoid a view which might in any way be confusing and to convey the true shape clearly.

When a rib occurs on the plane of a section and it is necessary to distinguish it, coarse sectioning may be employed as in the cone pulley of Fig. 182 where the ribs are sectioned but alternate lines are omitted. A note giving the number and thickness of the ribs would allow the end view to be dispensed with. Observe that the half end view is bounded by the center line and not by a full line, as the pulley has not been actually cut in half.

CHAPTER XI

DIMENSIONING

Purpose of Dimensions. - The purpose of dimensions is to give the necessary figures for constructing machine parts and putting them together. A drawing gives the shape of an object,

Fig. 183
the dimensions tell the size. These are two operations and both should be kept in mind.
Dimension Lines. - Dimension lines show where the figures apply to the drawing. They are terminated by arrow heads. The arrow heads should be about twice as long as they are wide.

Fig. 183 shows the construction of an enlarged arrow head, and its proportions. Fine full red ink lines are sometimes used for dimension, center, and witness lines. The arrow heads and figures are always black. The figures and notes should always be placed so as to read from the lower or right hand side of the
drawing. Neyer use slant fraction lines. In most cases it is considered bad practice to place the figures upright as shown in Fig. 184 where the figures may be easily read with the wrong dimension lines. Fig. 185 shows a better arrangement. The witness and dimension lines should be as fine as possible so as not to conflict with the lines of the drawing. In the interest of clearness there should be ass few lines as possible crossing each

Fig. 186
other. The center lines and object lines have only one purpose and should never be used as dimension lines. Generally the dimension lines can be kept outside of the views, thus keeping the size and shape of the object separate. In such cases place the larger dimensions outside the smaller ones as in Figs. 186 and 188. Fig. 187 shows a poorly dimensioned drawing of a pump plunger and Fig. 188 the same piece properly dimensioned. Finished surfaces are ordinarily indicated by a letter " f " placed across the line which represents the surface to be machined.

Elements of Dimensioning. - Constructions can be separated into parts and these parts can then be divided into geometrical
solids. Each of the solids can then be dimensioned and their relation to each other fixed. Figs. 189 to 193 show a prism, a pyramid, a cone, and a cylinder with dimensions. Figs. 194, 195, and 196 show combinations. Note that the same location of dimensions is maintained. In dimensioning cylinders give the diameters on the elevation as in Fig. 195. Placing of the five

Fig. 187

diameters on the end view would result in crowding as well as inconvenience in reading figures placed at an angle. Always give a diameter in preference to a radius if the part is a complete cylinder. For quarter rounds, fillets, and part circles give the radius.

General Rules. - To dimension a drawing successfully the construction of the pattern, machining, fitting, and putting together of the machine must be gone over. It is necessary to keep constantly in mind the person to whom the drawing is addressed and the purpose for which it is to be used.

Hints:
Do not hurry,
Give sizes of pieces for the pattern maker,
Give sizes and finish for the machinist,
Give assembly dimensions,
Give office dimensions,
Give notes where needed.

Fig. 194

It is necessary to remember that surfaces and not lines are being located. The dimensions of the piece must be kept in mind. Detail drawings are generally made to serve both pattern maker and machinist, and the figures indicate the size of the finished piece. The pattern maker is left to make required allowances for finish, shrink, and draft. In the case of forgings two drawings are sometimes made, one for the blacksmith giving the rough sizes, and another for the machinist giving the finished sizes.

Systems of Dimensioning. - Four general systems of dimensioning may be mentioned as follows:

1. All figures outside of the object lines.
2. All figures inside of the object lines.

3: All figures given from two reference lines at right angles to each other.
4. A combination of the preceding three systems.

The four systems are illustrated in Figs. 197 to 200. The first method is to be favored as the dimension lines and figures are kept separate from the interior and allow details to be easily seen. The size and shape are separated. The second method may be used when there is little detail within the view. It preserves the outline of the view but often there is confusion due to the crossing of the lines and crowding of
 the figures. The third method is particularly adapted to plate work and laying out where holes must be carefully located.

The fourth method is the one generally used but making it

Fig. 197

Fig. 198
conform to the first system by placing dimensions outside whenever it is conveniently possible.

- Location of Dimensions. - Facility in manufacture should be a motto in dimensioning. The figures must be so placed as to be easily found and perfectly clear in their meaning when found. Select that view which most completely defines the object and start with it first. If an assembly drawing, dimension only one piece at a time and finish all views of that one piece before starting another. Put on similar dimensions at the same time, as diameters, lengths, etc. Do not jump from one piece to another. Work from the more important dimensions to those of less importance.

See that all center distances are given. Consider the effect of location upon ease of reading the drawing. Similar pieces should be dimensioned in exactly the same way. Fig. 201 shows a gland,

Fig. 199

Fig. 200

Fig. 202 a pump valve, and Fig. 203 a cylinder head. They are all similar pieces and the dimensions are located in the same places on each. In the three figures the similar dimensions are indicated by the letters A, B, C, etc.

By observing such methods a system of dimensioning can be

employed which will save a great deal of time and many mistakes and omissions. It is seldom necessary to repeat the same dimension on a drawing. Drilling is generally best located in the view where it shows in plan, that is, in the view where it is laid out. Diameters are always clearer when shown on a section
or elevation rather than on an end view. The drilling for flanges is dimensioned by giving the diameter of the bolt circle and the size of bolt holes or bolts. The holes are understood to be equally spaced unless noted otherwise.

Shafting. - Shafting should be dimensioned by giving the diameters and lengths together with the sizes of keyways and pins and their location. Shafting is made from various grades of wrought iron and steel. For many purposes cold rolled shafting is generally used. This is shafting which has been cleaned of scale and rolled under pressure. It can be used without the

necessity for turning and is considerably strengthened by the surface skin which comes from the rolling process. Hot rolled shafting is black and must be turned to size before using. Usual sizes are:

Nominal Diameters of Shafting

$1^{1 / 4}$	$2^{1 / 2}$	4
$1^{1 / 2}$	$2^{3 / 4}$	$4^{1 / 2}$
$1^{3} / 4$	3	5
2	$3^{1 / 4}$	$5^{1 / 2}$
$2^{1 / 4}$	$3^{1 / 2}$	6

These are nominal sizes and are $1 / 16$ inch larger than actual diameter. Thus a 2 -inch shaft is $1^{15} / 16^{\prime \prime}$ actual diameter. Common lengths vary up to 24 feet. Special shafts have to be forged of steel suitable for the particular purpose. A shaft drawing is shown in Fig. 204 with the positions of the dimensions.

Tapers. - Various methods are in use for designating tapers. Figs. 205, 206, and 207 show ways of indicating the two diameters and the length. Sometimes a note is employed giving the taper

per foot of length as, " $3 / 4$ " per foot." When the slope is considerable it may be given as $1: 1$, indicating a 45° slope. In other cases the angle may be given in degrees. In addition there are

Fig. 204
a number of standard tapers in use such as $B \& S$ (Brown \& Sharpe), Morse Tapers, Reed Lathe Center Tapers, Jarno Tapers, and Sellers Tapers. In such cases the taper is indicated by a number which fixes the three dimensions, large diameter, small diameter, and length. A machinist's handbook should be consulted for complete information.

Small Parts. - There are many small parts such as shafts, pulleys, etc., which can be defined in one view by using a note to give the missing dimensions. When clearness is not sacrificed it is better to use this method in many cases. Small details which are standardized do not need to be completely dimensioned. This is true for bolts and screws, standard tapers, piping, wire, sheet metal, rope, chain, pins, rolled steel shapes.

Methods of Finishing. - In connection with dimensions the limits of accuracy for all fits should be given. The method of

finishing is given in another chapter, and should be indicated by a note and arrow.

1. Rough.
2. Rough turned.
3. Ground.
4. Polished.
5. Reamed.
6. Cored.
7. Running fit.
8. Loose fit.
9. Driving fit.
10. Scraped.
11. Finished.
12. Drilled.
13. Chipped.
14. Spot faced.

Checking Drawings. - The checking of a drawing is one of the important duties of most draftsmen. Whenever possible it should be done by someone who has not worked on the drawing. The first thing to do is to see if the drawing can be used without unnecessary difficulty, and to see if the parts are such as will fit and operate successfully. There must be clearance for moving parts. Then observe if sufficient views are given to completely determine the parts, and that all dimensions necessary for machining and erecting are given and that they are properly located. Check the correctness of all figures by use of the scale and by computation. All notes should contain a clear statement and
be carefully located. Standard parts should be used where possible. See that the fewest number of different sizes of bolts and similar small parts are used. Consider the materials of which the parts are made, the construction of the patterns and cores, and the method of machining. A valuable article on "How Machinery Materials and Supplies are Sized" is given in "Machinery," February, 1916.

CHAPTER XII

MACHINE CONSTRUCTION

Machine Operations. - The parts of machines which come from the foundry, forge, or rolling mill generally require finishing, such as machining to size, drilling, tapping of holes, ete., before they can be assembled in the machine of which they are to be a part. A knowledge of what is involved in the processes of machining is important to the machine draftsman. The principal machine operations are turning, drilling, boring, planing, and milling. The machines used are lathes, drills, boring mills, planers, milling machines, shapers, etc.

In order to pursue the subject of drawing with profit at least

one book on machine tools should be purchased and studied. The advertising pages as well as the reading pages of such magazines as "American Machinist" and "Machinery" are further sources of information which should not be neglected. Every opportunity should be availed of to observe and study work as it is carried out in pattern shop, forge, foundry, and machine shop. Such knowledge is invaluable and will often enable the draftsman materially to reduce the expense of production by simplifying or adapting his designs.

Drills.-Drills are used for making holes of comparatively small diameter. Two forms of drills are shown in Figs. 208 and 209. The first is a flat drill and the second a twist drill. The latter is the form in general use. Drills are used in different forms of machines. Look up the following in the advertising pages of "American Machinist" or "Machinery" : Sensitive Drill, Drill Press, Multiple Drill.

The Steam Engine. - It is important for the draftsman to learn the names of the parts of the steam engine. Fig. 210 shows the principal parts.

1. Cylinder head.
2. Piston.
3. Casing or lagging strip.
4. Cylinder.
5. Piston rod.
6. Steam chest cover.
7. Steam port.
8. Slide valve.
9. Exhaust port.
10. Valve rod stuffing box.
11. Valve rod gland.
12. Valve rod.
13. Eccentric rod.
14. Eccentric.
15. Outer bearing.
16. Main shaft.
17. Fly wheel.
18. Inner bearing.
19. Crank.
20. Crank pin.
21. Frame.
22. Crosshead pin.
23. Crosshead.
24. Crosshead guide.
25. Connecting rod.

Steam is admitted to alternate sides of the piston by means of the slide valve which is actuated by the eccentric through the eccentric rod. The piston transmits the pressure of the steam

Fig. 2ll

Fig. 212
through the piston rod, crosshead, and connecting rod to the crank. The crank causes the shaft to revolve, carrying with it the flywheel, from which power may be transmitted by means of a belt.

Pistons. - Pistons are used in many forms of machines and vary accordingly. Some forms are shown in Figs. 211 and 212. The names of the parts for the form of steam piston shown in Fig. 212, are

1. Piston Body,
2. Follower,
3. Follower Bolts,
4. Bull Ring,
5. Packing Rings.

To prevent loss of pressure by leakage past the piston some form of packing ring is generally employed. Pistons are most always
made of cast iron as are the rings. The rings are turned to a slightly larger diameter than the cylinder. A piece is then cut out and the ring is then sprung into place. For water pistons

a soft packing of hemp, fiber, or leather is used. For large vertical engines steel pistons are sometimes used.

Sliding Bearings. - Sliding bearings are of many forms, as shown in the following figures. The general end sought is to have the projected area of slide such that the pressure will not force out the lubricant and allow the metals to come into contact with each other. Smoothness of surfaces is only relative and

Fig. 216

Fig. 217

Fig.218
surfaces in contact wear rapidly, hence the necessity for efficient lubrication.

Fig. 213 shows a form of planer guide. It is self-adjusting for wear and can be easily oiled. There is, however, considerable pressure between the inclined surfaces, which means that the power for operating the table increases as the angle A is decreased, and also the wear. A is commonly made 90° or less for small planers, while for heavy planers it may be 110° or more. The side pressure of the tool must be considered in selecting the proper value of A since it exerts a tendency to raise the table from the ways.

Fig. 214 shows the form generally used for lathe ways. It is self-adjusting, does not readily hold chips or dirt, but is not so easily kept oiled as Fig. 213.

There are many other forms of such bearing surfaces, some of which are provided with gibs for adjusting, as in Fig. 215. Com-

Fig. 219

Fig. 220

Fig.221
mon forms of crosshead guides for steam engines are shown in Figs. 216, 217, and 218. Fig. 218 is used on all sizes of engines, and is satisfactory, since it allows the crosshead to adjust itself to the crank pin and connecting rod if turned concentric with the

cylinder. Sometimes, however, the guides are turned with centers as in Fig. 219. This prevents turning.

For șmall pressures the form shown in Fig. 220 is often used, sometimes with one rod only. Fig. 221 is another form of sliding bearing. The pressure per square inch of projected area on crosshead guides should not exceed 100 pounds per square inch and may well be kept as low as 40 pounds per square inch.

Wear and Pressure. - Where there is much wear care must be used in the design of a sliding bearing and guide. Provision should always be made for running over at the ends of the guide. The same applies to the width of the guide. The effect of guides which are too long is shown much exaggerated by the shoulder
" C " in Fig. 222. Fig. 223 shows the correct design in which the slide runs over the guide at each end and causes more even wear. If " A " and " B " are made of equal length there will be equal wear. This same principle is involved in the piston and cylinder of a steam engine which accounts for the counterbore over which

the piston runs, " C " (Fig. 224), and similarly for slide valve seats (Fig. 225).

Stuffing Boxes. - Some common forms of gland and screw stuffing boxes used on engines, pumps, etc., for preventing leakage of steam or water around the piston rod where it passes through the end of the cylinder are shown in Figs. 226, 227, and 228. For rods $11 / 4$ inch in diameter or less the common screw stuffing

box, Fig. 228, may be used. They are generally made of composition although they are sometimes made of cast iron for cheap work. The gland stuffing box (Figs. 226 and 227) is used for rods $1^{1 / 2}$ inch and more in diameter. The box should be deep enough for four strands of packing and the gland so constructed as to be able to compress it to about one half its original size. These glands may have the bottom of the gland and box beveled as shown in Fig. 227. They may be lined with composition in which case the lining should be at least $3 / 16$ inch thick, but for rods less than $2^{1 / 2}$ inch diameter it is generally advisable to make the gland entirely of composition. These are the common forms, but the student will do well to investigate some of
the various types of metallic packings, since they are largely used in good designs.

Useful Curves and Their Application. - There are many small details in the actual drafting of a design which often give trouble out of proportion to their apparent importance when first en-

countered. The following suggestions are made to facilitate the drafting part of design, and not as rules to be strictly adhered to. Various curves which are commonly used are shown.
Fillets and Rounds. - The drawing of fillets and quarter rounds deserves attention, since they are of so frequent occurrence. Fig. 229 shows a portion of a machine. The centers and radii of the various ares are indicated. All radii are too large, but

Fig. 235

Fig. 236

Fig 238

Fig. 239
especially 1 and 2 . Radius 1 gives a point at y. Radius 2 is so large that it cannot be used for the complete circumference of the boss as indicated at x. Of course a changing radius of fillet might be used, but this would not allow the use of ready made fillet strips. Fig. 230, in which the limiting radii are used, is an improvement. Fig. 231 shows a much better design. Note that the radii 1 and 2 are less than the thickness of the flange and boss respectively. The effect of a quarter circle is obtained by this method in which the flange and boss each start with a straight line. The straight line also produces a better appearance after finishing off the surface of the boss. This is shown in Figs. 232, 233 , and 234 , where the effect of different fillets is indicated at B
in each of the views. In the first case there is an undercutting, in the second view B shows the irregular outline produced, while the third case shows the correct design.

Arcs and Straight Lines. - When arcs are used in connection with straight lines the fault shown at a in Figs. 235 and 237 should be avoided. Do not run the are past the tangent point " a ", and notice that the line $a-b$ is a straight line in Figs. 236 and 238.

At A in Fig. 239 is shown the effect of not changing the radius when two parallel lines are continued by arcs. At B the thickness of material has been kept by maintaining the same center and changing the radius by the distance t.

Flanged Projections. - When flanged projections are used with bolts or nuts they may take a variety of shapes, some of

which are shown in Figs. 240 to 243. After locating the centers of the bolt holes the extent of the flange may be found by adding twice the bolt diameter to the distance between bolt centers. Frequently the outline is obtained as in Fig. 240 in which an are is drawn from the center of the bolt hole with a radius equal to the diameter of the bolt.

A much better appearance is obtained by using a larger radius whose center is at the intersection of the bolt hole and the center line, as shown in Fig. 241. Either straight or curved lines may
be used to join the small and large ares. Sometimes an ellipse may be used. A gland is used for illustration, but similar cases occur in pipe connections, the bolted feet of machines, etc.

Flange Edges. - Flanges are often finished with curves so as to avoid machining. Several forms are shown in Figs. 244 to 248. The radius R may be taken equal to the thickness T. The centers for the various radii are indicated.

Flanges and Bolting. - A method of finding the diameter of bolt circle and diameter of flange is illustrated in Figs. 249, 250, and 251. For through bolts consider Figs. 249 and 250. Draw

in a proper fillet at r_{1}. For a trial the radius r_{1} may be taken as one fourth of the thickness of the cylinder wall t. Then lay off X, equal to one half the distance across flats of bolt head, and Y, equal to one half the distance across corners of nut. The diameter of the bolt circle, D_{B}, may now be found by laying a scale on the drawing and selecting a dimension. This will be equal to, or greater than, $d+2\left(t+r_{1}+X\right)$, and may be taken at the nearest $1 / 8$ th inch. The flange diameter may then be obtained by laying out the distance Y, as in Fig. 249, and using the scale to find an even dimension equal to, or greater than, $D_{B}+2\left(Y+r_{2}\right)$. The radius r_{2} may be taken at $1 / 8$ th to $1 / 16$ th the thickness of the flange. When studs are used the diameters D_{B} and D_{F} may be greatly decreased as shown in Fig. 251. The distance C should be about equal to t, although if necessary it can be made equal to one half the diameter of the bolt.

Keys. - Keys of various forms are used to prevent relative motion between shafts and pulleys, gears, crank arms, etc. The common forms are here shown. Fig. 252 is called a saddle key and may be used where only a small force is to be transmitted
and where close or frequent adjustment is required. Fig. 253 is called a flat key, and requires a flat spot upon the shaft. Its holding power is a little greater than the preceding form. Set screws are sometimes used with Figs. 252 and 253 to secure a closer contact. Fig. 254 is the most common form, and may be either square or rectangular in section. The sides of the key should fit closely in the hub and shaft. Various proportions are given for keys. Square keys are often made with

$$
W=\frac{D}{4}
$$

Other proportions are

$$
\begin{aligned}
W & =\frac{D}{4} \\
T & =\frac{D}{6} \text { to } \frac{D}{4}
\end{aligned}
$$

Unwin gives

$$
\begin{aligned}
W & =1 / 4 D+1 / 8^{\prime \prime} \\
T & =1 / 8 D+1 / 8^{\prime \prime}
\end{aligned}
$$

The taper for keys may be from $1 / 16$ th to $3 / 16$ ths of an inch per foot of length. One eighth inch is often used. The key should
be half in the shaft and half in the hub. When the force to be transmitted is very large two keys may be used. In such cases they are generally placed 90° apart. The length of keys

Fig. 258

Fig. 259

Fig. 260
should be one and one half or more times the diameter of the shaft. Fig. 256 shows the Lewis key, invented by Wilfred Lewis. The direction of rotation for the driving shaft is indicated. It will be noted that this form is wholly under compression. Fig. 255 is a different way of locating a square key. The side S may be taken as one fourth the diameter of the shaft. Fig. 257 shows a round key. It is a desirable form when it can be used, as when located at the end of a shaft. Fig. 258 shows the ordinary plain key; Fig. 259 , a key provided with a gib to make its removal easier. Fig. 260 shows a round end
 key which may be fitted into a shaft. Such keys are often used when it is desired to arrange for a part to slide on the shaft. When a long key is secured in a shaft and used for this purpose it is called a feather or feather key. Square end keys may be used in the same way. Fig. 261 shows the Woodruff Key, which consists of a part of a circular disc. They are made in a variety of sizes with dimensions suiting them to different purposes. The circular seating allows the key to assume the proper taper when a piece is put onto the shaft.

CHAPTER XIII

SKETCHING

Uses of Sketching. - Freehand sketching is of particular importance in connection with drafting and will be briefly considered in this chapter. All that has been said in the previous chapters concerning the theory and practice of drafting applies to freehand sketching. The term sketching must not be considered as indicating incompleteness, for if anything a sketch must be more complete than a mechanically executed drawing. Sketching is the engineering language of the trained executive as well as a convenient and quick method of representation. Sketches are used to give information from which parts are to be made; they are used for repair parts; new parts; as an aid to reading drawings; as an aid to design; as a means of recording ideas, and for many other purposes.

Accuracy of thought, observation, representation, and proportion are essential. The four " P ' s " of sketching are practice, patience, proportion, and proficiency. Too much emphasis cannot be put upon the necessity of accuracy in proportion and detail.
A most interesting example is shown in Fig. 262 which is a reproduction of a sketch for the first steam hammer as drawn by James Nasmith. Quoting from Nasmith's autobiography by Samuel Smiles:* "I got out my 'scheme book,' on the pages of which I generally thought out, with the aid of pen and pencil, such mechanical adaptations as I had conceived in my mind, and was thereby enabled to render them visible. I then rapidly sketched out my steam hammer, having it all clearly before me in my mind's eye. In a little more than half an hour after receiving Mr. Humphrie's letter, narrating his unlooked-for difficulty, I had the whole contrivance in all its exccutant details, before me in a page of my scheme book. The date of this first drawing was November 24, 1839."

[^1]Materials for Sketching. - The materials necessary for sketching are a 2 H drawing pencil, pencil eraser, art gum, and paper. Either plain or squared paper may be used, but it is better to use the plain paper at first so as not to be dependent upon the aid

Fig. 262. - First Drawing of Steam Hammer, November 24, 1839.
which the squares give. The pencil should be kept well sharpened with a long round point. It is desirable to have a small board on which the paper may be tacked, or clip boards such as are used by bookkeepers will be found very convenient as a means of holding the paper. Every sketch should have a title, the date, and the name of the person who made it.

Making a Sketch. - To make a sketch the following order may be pursued. First examine the object, determine the number of views necessary completely to define it, and observe the proportions. Then proceed to sketch very lightly, locating center lines and blocking in the limits for all views. Sketch in the details and then go over and brighten up wherever necessary in order to make all parts clear and definite. Straight lines may be drawn by making a succession of short straight lines or by

marking points and drawing from one point to another. Views should be blocked in completely with straight lines regardless of the number of curves and circle arcs.

To sketch a circle draw center lines at right angles (Fig. 263), space off radii, as shown in Fig. 264, on the center lines and in between them. Another method is to block in a square made up of four smaller squares (Fig. 265), then sketch in one fourth of the required circle at a time.

Taking Measurements. - There are a great many tools used for determining the sizes of machine parts and constructions. The names of some of the tools should be learned together with the methods of using them and the conditions under which they are used. For this purpose the reader is advised to secure a catalog of machinist's tools. Some of the tools used for various purposes are:

The two foot rule for comparatively rough work.
The standard steel rule for more accurate work. It should have both binary and decimal divisions.

Steel tapes used for measuring rather long distances.
Straight edge, used for extending surfaces.
The square, used in a variety of forms; fixed, adjustable, combination.

Calipers, used for obtaining distances. There are many forms; outside, inside, spring, transfer.

Surface plate and surface gage.
Depth gage and hook gage or scale.
Plumb bob.
Micrometer.
Vernier caliper.
Plug and ring gages.
Wire and sheet metal gages.
Screw thread gages.
Radius gages.
The surfaces to be measured are flat surfaces and curved surfaces. These will appear in many combinations and will require separate consideration in each case. Cylinders may be measured directly with the calipers or scale. A steel tape may be used to measure the circumference of a large cylinder and the diameter calculated. Angular measurements are made with some form

Fig. 266 of protractor. The bevel protractor and center square are useful for this purpose. The use of chalk or a marking solution is often necessary or convenient. Curved outlines may be obtained by offset measurements, by rubbing an outline on paper, or by making a template by such means as the conditions permit. Center distances may be found by measuring from the edge of one hole to the corresponding edge of the next hole as indicated in Fig. 266.

The question of accuracy in taking measurements will arise frequently. The finished or machined parts should be measured as accurately as the means at hand will allow. Shafts or sliding blocks, or wherever a fit is involved, should be measured with the micrometer or similar accurate means. Rough castings of small or medium size may be measured to the nearest $1 / 16$ th inch, while larger ones may be near enough when measured to $1 / 8$ or even $1 / 4$ th inch. In all cases judgment must be exercised, and whenever in doubt take measurements as closely as possible under the conditions.

Where the parts being sketched are for repairs or replacement, very accurate measurements are often required, and in the case of a fit allowance for wear must be made. If a whole new machine or construction is to be built much time can often be saved by less accurate measurements, as the parts will be dimensioned to go together when the final drawing is made. Ingenuity and common sense are the primary requisites.
in connection with measurements it will be necessary to know something of standard nomenclature. For instance, the three

Fig. 268
Bolts marked same as holes

Fig. 267
dimensions of a taper are indicated by a single number and a name.

Some Ideas on Sketching. - The difficulties which are to be met and overcome when making sketches under trying circumstances with limited time, inaccessability, with a machine in operation in close quarters, etc. - is little understood or appreciated by those accustomed to the conveniences of the drafting room.

Many times sketches are made only for one's own use and so can perhaps be marde a little less presentable than when made to take the place of a drawing. However, there is a warning which must be sounded, and that is the unvarying rule "to preserve definiteness under all circumstances." A sketch may be hastily made, but a careless sketch is worse than useless. Be sure that what is given is right and of certain meaning. The steps which must be followed in making a sketch are:

Sketch the parts.
Put on dimension lines and notes.
Measure the parts and fill in the figures.
Some considerations to be kept in mind are:-
Use part views to show special features or details.
Use notes freely but not as a substitute for necessary views.
Show hexagons, octagons, etc., across flats using a note to tell the number of sides or insert a revolved section.

Note identification marks, and mark parts to facilitate putting them together and for fixing relative positions.

Note finished surfaces and kinds of finish.

Use templates whenever in doubt as to curves, location of drilling, etc.

Note materials of which machine or parts are made.

Measure sizes of holes as well as of bolts, shafts, etc.

A small amount of surface shading is often of value.
Note the location of the machine in reference to other machines or to building features if such information has any possibility of being useful.

Rods, bolts, bars, and long pieces of uniform section can generally be shown in one view.

Most machines and some parts of machines will carry the manufacturer's name and identification, sometimes stamped into the machine, and sometimes on a name plate. The information given in this manner should always be noted in connection with the sketch. Sometimes parts are either right or left hand, and this fact should be noted. It is a good plan to examine all parts very carefully for identification marks.

When parts bear a definite relation to one another, prick punch marks or a filed groove will often be of great assistance in re-
assembling (Figs. 267 and 268). Oftentimes the top or bottom of a part should be marked. Where a number of bolts are used with reamed holes they are often numbered or otherwise marked (both bolt holes and bolts, Fig. 269). Very often part views may

be used to save time by adding a note: For instance, a circular object with lugs, as shown in Fig. 270. In the case of cylindrical objects the word "diameter" will often save a view. A washer would be sketched as in Fig. 271. Sections are rather freely used in sketching as they give prominence to the sketch. It is often desirable to make a separate outline sketch without dotted lines in connection with a sectional drawing of a part, especially when the sketches must be hastily made, as the two sketches result in less confusion than when combined in one view.

When sketches are made in connection with diagrams for the transmission of power, or a mechanism of any sort, the computations should be included with the sketch, and existing pulleys or other parts should be clearly dimensioned and indicated to distinguish them from proposed additions. In the case of foundations where bolts are to be located, differences in level
 elbow Fig. 272 must be considered as well as center line distances. When locating shaft hangers, or constructions to be fastened to a wall or ceiling, the surroundings such as parts of the permanent structure, like beams or corbeling of the brick wall (Fig. 272), should be measured and sketched with the part to be installed.

The principal point to be brought out in connection with sketching of any kind is to leave nothing to guess - to have too much rather than too little information, and to make every line and note absolutely definite.

CHAPTER XIV

ESTIMATION OF WEIGHTS

Accuracy. - It is often necessary to compute the weight of machine parts or of piles of materials; for instance, to estimate the amount of coal on hand. The annual stock taking of many companies requires much of this work which must be accomplished accurately and expeditiously. Some of the methods used should be known together with the degree of accuracy required. For some purposes a result within 5% or even 10% may be sufficiently close, while in other cases an accurate result may be desirable, as when figuring a large number of pieces of expensive material. The weights of many standard parts are well known and are given in manufacturers' catalogs. The weights of steel shapes are known and tabulated in pounds per linear foot, the weight of bolts per 100 , and similarly for other pieces.

Weights of Materials. - The following weights are average values for various materials and may be used for ordinary calculations.

Material	Pounds per Cubic Inch	Pounds per Cubic Foot
Cast Iron.	. 26	450
Wrought iron.	. 28	480
Steel.	. 29	490
Brass .	. 30	530
Copper.	. 32	550
Lead.	. 41	710
Aluminum.	...	160
Granite.	\ldots	170
Brick.	\ldots	120
Concrete.	...	145
Water	. 036	62.5
Spruce	. . .	30
White pine.	...	30
Yellow pine.	...	41
Maple .	\ldots	45
Lignum vitae.	\ldots	83
Oak.	\ldots	50

Weight of Loose Materials. - In estimating the amount of material in a pile, its shape may be approximated to one or more geometrical forms and its volume computed. This is best done by making a sketch with dimension lines which are filled in with measurements. Such sketches should be preserved for checking purposes and as a record. The weight per cubic foot or yard is then obtained by loading a car of measured volume and weighing it or by filling a box containing a cubic foot or yard and finding the net weight. The material should of course be disposed as

near the density of the pile as possible. By careful judgment and some experience a very close approximation of weight may be obtained in this manner. For more accurate work, the surveyor's transit may be used.

Weight of Castings. - The computation of the weight of castings most frequently occurs either in connection with the cost or where a machine must come within certain limits of weight. The weight may be calculated from the drawings. For simple objects this is not difficult, but for many shapes much loss of time may be saved by systematic methods and proper division into elementary forms. Two sets of weights must be considered; one the object in the rough, and the other the finished piece. Allowances for finish must be made. It is necessary to know what holes or openings are to be cored and what ones are to be machined. Cylindrical pieces are readily figured by dividing
into separate cylinders. Limits as to weight are very important when machines must be assembled in out of the way places, or where transportation is by pack mules or other primitive means.

Methods of Calculation. - The general method of finding the weight of a piece is to compute its total volume in cubic inches and then multiply this volume by the weight of a cubic inch of the material. Most pieces may be divided into flat plates, cylinders, and flanges, each of which should be lettered and tabulated. Sometimes fillets may be balanced against bolt holes or against rounded corners. In other cases the fillets may be considered as a certain per cent of the whole. The weight as figured should also be increased to allow for rapping the pattern in the mold. The allowance for finish may be $1 / s^{\prime \prime}$ for general work but this varies with different classes of work and with the degree of accuracy required in the finished piece.

When a piece has a uniform thickness but irregular outline it may be broken up into plane figures and the area of each found separately (Fig. 273). After adding them together multiply by the thickness to obtain the volume and then by the unit weight to find the total weight, as illustrated. The dash lines divide the flat surface into seven parts, each of which is lettered. These may be listed in tabular form.

Designation	Part	Dimensions Inches	Area Square Inches
A	Rectangle	$4 \times{ }^{3 / 4}$	3.
B	$"$	$1^{3} / 4 \times 1$	1.75
C	$"$	$5^{1} / 2 \times 1^{1 / 4}$	6.875
D	"	$4^{1 / 2} \times 1$	4.5
E	Triangle	$1 /{ }_{2}\left(2^{1} / 2 \times 4^{1 / 2}\right)$	5.625
F		$1 / 4(36-28.27)$	1.93
G	Circle	$1 / 4(3.1416)$.785

Total area square inches
24.465

Volume $=$ area \times thickness
$=24.47 \times 1.25=30.59$ cubic inches
The area of part G is one fourth the area of a circle having the radius indicated. The area of part F is found by subtracting one
fourth the area of a circle having the radius given from the area of a square, one side of which is equal to the radius of the are.

With irregular shapes the area is sometimes divided approxi-
 mately into regular figures, the dimensions for which are obtained by applying the scale to the drawing. This is illustrated in Fig. 274 where the dash line $x-x$ is drawn so that the area B appears to be equal to the area $A+A$. The distance H is then measured and multiplied by L to find the area. In the case of hollow pieces, find the volume as though the piece was solid, then subtract the volume of the spaces.

In Fig. 275 the volume would be found as tabulated, in which the A and B are called plus (+) volumes and C is called a minus $(-)$ volume.

Designation	Part	Dimension	Volume in Cubic Inches	
			$+$	-
A	Square prism	$3 \times 3 \times 21 / 2$	22.5	
B	Rectangular plate	$5 \times 6 \times 1$	30.	
C	Cylinder	$1 \times 3.1416 \times 3$		9.42
Totals. 52.5				9.42

$(A+B)-C=$ Net volume
$52.5-9.42=43 \pm$ cubic inches

For the ring shown in Fig. 276 find the area of the cross section A and multiply by the circumference of the mean diameter. This method is often a convenient one.

Weight of Cylinder Head. - To find the approximate weight of the small cylinder head of Fig. 277 it may be divided into

three cylinders, two positive and one negative. The round at x may be balanced against the fillet at y for approximation purposes. Allow say $1 / 16$ th inch on each of the finished surfaces. The calculations will be as tabulated.

Designation	Part	Dimensions Inches	Volume Cubic Inches	
			$+$	-
A	Cylincler	$28.27 \times 9 / 16$	15.90	
B	6	$9.62 \times{ }^{3} / 8$	3.61	
C	6	$4.91 \times 3 / 8$		1.84
Total.			19.51	1.84

$(A+B)-C=$ net volume
$19.51-1.84=17.67 \mathrm{cu}$. in.
Vol. \times wt. per cu. in. $=$ total weight
$17.67 \times .26=4.60$ pounds

Weight of Plunger Barrel. - To approximate the weight of the pump barrel shown in Fig. 278. First divide it into parts as indicated in the figure. The plus volume treats it as a solid. The minus volume consists of the interior cylindrical spaces
H, G, F, and J. The calculations for its cost at ten cents per pound follow. For any other price multiply by the required cents per pound and divide by ten. Since both ends are alike only one half is figured and the result is then multiplied by two.

Design tion	Part	Dimensions Inches	Volume Cubic Inches	
			+	-
A	Flange	$12 \times 12 \times 11 / 4$	180	
B	Stuff box	$\frac{\pi(7.5)^{2}}{4} \times 3^{1 / 2}$	154	
C	Main cylinder	$\frac{\pi(6.5)^{2}}{4} \times 14^{1 / 2}$	481	
D	Port flange	$7 \times 7 \times 1^{1 / 4}$	62	
E	Foot flange	$4 \times 8 \times 11 / 4$	80	
F	Cylinder	$\frac{\pi(5)^{2}}{4} \times 14$		274
G	Throat	$\frac{\pi(4)^{2}}{4} \times{ }^{3 / 4}$		9
H	Stuff box	$\frac{\pi(6)^{2}}{4} \times 4$		116
J	Port	$\frac{\pi(3)^{2}}{4} \times 1^{1 / 2}$		11
Total volumes .			9.57	410
Multiplied by 2 for two ends			1914	820

1094 cu . in. net volume
$1094 \times .26=285$, pounds weight
$285 \times .10=\$ 28.50$, cost of casting at 10 cents per pound
Weight of Forgings. - Steel and wrought iron shafts may be readily figured, especially when turned from stock bars or rods. Forgings, however, require careful consideration as the rough forging may weigh from 25% to 50% more than the finished piece, especially if the shape is at all complicated.

CHAPTER XV

PIPING

Piping Materials. - Pipe made of various materials is used for conveying liquids and gases. For a complete treatment of the subject of piping and its uses, piping drawings, etc., see the author's "Handbook on Piping," D. Van Nostrand Company, N. Y. The illustrations for this chapter are from the above book.

Cast iron pipe is cheaply made and is used for underground gas, water, and drain pipes, sometimes for stean and exhaust pipes where low pressures are carried.

Wrought iron or steel pipe is most commonly used, especially where high pressures are encountered. Copper is used to a certain extent where there is limited room. For hot water or bad water, brass pipe is to be preferred as it does not corrode like iron or steel. Spiral riveted steel piping is often used for large pipes.

Pipe Fittings. - For joining lengths of pipe and making turns and connections, "fittings" are used, Fig. 279. Such fittings consist of flanges, couplings, tees, ells, crosses, etc. Small pipe is often "made up" by means of couplings and screwed fittings - large sizes use flanges and flanged fittings. Some general information is given in the tables included in this chapter.

Fig.281.

Fig. 282

The representations of Figs. 280 and 281 are often used when making piping layouts.

Standard Pipe. - Wrought pipe is known by its nominal inside diameter. In the United States the Briggs Standard is in general use. The nominal diameter differs from the actual diameter by varying amounts, as indicated in the Table. Standard pipe is

used for pressures up to 125 pounds per square inch. Extra strong and double extra strong pipe are made for use at higher pressures. The extra thickness is obtained by reducing the inside diameter, the outside diameter remaining constant for a given nominal diameter. The actual cross sections for the three weights of $3 / 4$ inch pipe are shown in Fig. 282.

Pipe Threads. - Pipe threads are cut with an angle of 60°, with the top and bottom rounded, making the height .8 of the pitch. The threads are also cut on a taper of three fourths inch per foot as illustrated in Fig. 283.

Dimensions of Standard Wrought Pipe

Nominal Diameter, Inches	Actual Inside Diameter, Inches	Actual Outside Diameter, Inches	Threads per Inch	Length of Perfect Thread, Inches
$1 / 8$.269	.405	27	.19
$1 / 4$.364	.540	18	.29
$3 / 8$.493	.675	18	.30
$1 / 2$.622	.840	14	.39
$3 / 4$.824	1.050	14	.40
1	1.049	1.315	$11^{11 / 2}$.51
$1^{1 / 1}$	1.380	1.660	$11^{1 / 2}$.54
$1^{1 / 2}$	1.610	1.900	$11^{1 / 2}$.55
2	2.067	2.375	$11^{1 / 2}$.58
$2^{1 / 2}$	2.469	2.875	8	.89
3	3.068	3.500	8	.95
$3^{1 / 2}$	3.548	4.000	8	1.00
4	4.026	4.500	8	1.05

Fig. 284

Dimensions of Walworth Mfg. Co. Cast Iron Fittings

Size of Pipe, Inches	A Inches	$\begin{gathered} \mathrm{A}-\mathrm{A} \\ \text { Inches } \end{gathered}$	B Inches	C Inches	D Inches	E Inches	F Inches	G Inches
$1 / 4$	$3 / 4$	$1^{1 / 2}$	7/16			1	$1 / 4$	$3 / 8$
$3 / 8$	$7 / 8$	$1^{3 / 4}$	$9 / 16$	$1^{7 / 16}$	$2^{1 / 16}$	$11 / 8$	$5 / 16$	7/16
$1 / 2$	$11 / 16$	$2^{1 / 8}$	11/16	$17 / 8$	$2^{9} / 16$	$17 / 16$	$3 / 8$	1/2
$3 / 4$	$1^{5} / 16$	$25 / 8$	13/16	$2^{1 / 16}$	$2^{3 / 4}$	$1^{3 / 4}$	7/16	$9 / 16$
1	$11 / 2$	3	15/16	$2^{1 / 2}$	$3^{1 / 4}$	$2^{1 / 16}$	$1 / 2$	$5 / 8$
$1^{1 / 4}$	$1^{13} / 16$	$35 / 8$	$1{ }^{1 / 16}$	3	$3^{3} / 4$	$2^{1 / 2}$	$9 / 16$	11/16
$1^{1 / 2}$	2	4	$1^{3} / 16$	$3^{1 / 4}$	$4^{3 / 4}$	$2^{3 / 4}$	5/8	13/16
2	$2^{3 / 8}$	$4^{3 / 4}$	$13 / 8$	4	$5^{1 / 2}$	$3^{3 / 8}$	11/16	$7 / 8$
$2^{1 / 2}$	$2^{7} / 8$	$5^{3 / 4}$	$15 / 8$	5	$6^{13} / 16$	41/8	13/16	1
3	$3^{5} / 16$	$6^{5 / 8}$	$17 / 8$	$5^{5} / 8$	75/8	$4^{3 / 4}$	$15 / 16$	1
$3^{1 / 2}$	$3^{11} / 16$	$7^{3} / 8$	$2^{1 / 16}$	$6^{3} / 8$	$8^{3 / 4}$	$5^{1 / 4}$	1	$1^{1 / 16}$
4	4	8	$2^{1 / 4}$	$7^{1 / 8}$	$9^{3} / 4$	6	$1^{1 / 16}$	$11 / 8$

American Standard Pipe Flanges
125 Pounds Working Pressure

Pipe Size, Inches	Diameter of Flange, Inches	Thickness of Flange, Inches	Diameter of Bolt Circle, Inches	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Bolts } \end{gathered}$	Diameter of Bolts, Inches
1	4	7/16	3	4	$7 / 16$
$11 / 4$	$4^{1 / 2}$	$1 / 2$	$3^{3} / 8$	4	7/16
1/2/	5	$9 / 16$	$3^{7 / 8}$	4	$1 / 2$
2	6	5/8	$4^{3 / 4}$	4	$5 / 8$
$2^{1 / 2}$	7	11/16	$5^{1 / 2}$	4	5/8
3	$7^{1 / 2}$	$3 / 4$	6	4	$5 / 8$
$31 / 2$	$8^{1 / 2}$	13/16	7	4	5/8
4	9	15/16	$7^{1 / 2}$	8	$5 / 8$
$4^{1 / 2}$	$9^{1 / 4}$	15/16	$73 / 4$	8	$3 / 4$
5	10	15/16	$81 / 2$	8	$3 / 4$
6	11	1	$9^{1 / 2}$	8	$3 / 4$
7	$12^{1 / 2}$	$1^{1 / 16}$	$10^{3 / 4}$	8	$3 / 4$
8	$13^{1 / 2}$	$1^{1 / 8}$	$11^{3 / 4}$	8	$3 / 4$

CHAPTER XVI

INTERSECTIONS

The Line of Intersection. - The line of intersection of two surfaces is that line which contains all the points which are on both of the surfaces. Objects in general are made up of parts and where these parts come together there is said to be a line of intersection, as shown in Figs. 285 and 286. The chimney intersects the roof and there is also an intersection between the dormer window and the roof. The intersection between two cylinders is shown in Fig. 286.

It is often necessary to determine the intersection of two surfaces, either to find the appearance or for purposes of development.

The intersection between two planes is a straight line as shown in Fig. 287. If these planes cut a cylinder or cone the lines of

Fig. 286 intersection may be straight or curved (Figs. 288 and 289). If the plane is at right angles to the axis a right section is cut as shown by the horizontal planes which intersect the cylinder and cone in circles. If the plane passes through the axis it intersects the cylinder in a straight line parallel to the axis called an element. In like manner an element may be cut from the cone. Note that all the elements of a cylinder are parallel, and that all the elements of a cone pass through the apex.

Intersecting planes, elements, and cut sections are the basis for finding lines of intersection of surfaces.

Intersection of a Vertical Prism and a Horizontal Prism. -

 Fig. 290 shows a square prism intersecting a triangular prism. Two methods of solution may be used. First method: Examine the three views, then note that the top view shows where the

Fig 287

Fig. 288

Fig. 289
edge $A B$ of the square prism pierces the front face of the triangular prism at point B^{H}. The front and side views of this point may be obtained by projection and are shown at B^{v} and B^{s}. Note that the front view shows the intersection of the edge $E F$

Fig. 290 of the square prism with a vertical edge of the triangular prism. Project to the other views. Join the points thus found which will determine the projections of a line of intersection between the two prisms. Second method: Imagine a vertical plane to be passed through the edge $A B$. This plane will intersect the face of the triangular prism in a vertical line $x y$ shown in the front view. Since the lines $x y$ and $A B$ are in the same plane, the point in which they cross will show in the front view at B^{v}. By passing similar planes through each of the edges the other points may be found.

Intersection of a Vertical Prism and an Inclined Prism Visibility of Points. - The intersection of two prisms, one of
which is inclined, is shown in Fig. 291. Either of the methods just described may be used, but the second method is to be preferred. A cutting plane must be passed through each edge of both prisms within the limits of the curve of intersection. This means all of the edges of either prism through which a plane may be passed that will cut the other prism. A plane passed through the front edge of the vertical prism would not cut the inclined prism, and so would not locate any points on the line of intersection. A vertical plane through line $A B$ will intersect the front face of the rectangular prism in line $C^{v} D^{v}$. The point in which
 these lines cross is shown in the front view at B^{v}. Since both lines are on visible faces of the prisms the two lines are visible and the point B^{v} is visible. Lines

Fig. 292
of intersection in order to be visible must join two visible points determined as stated. A vertical plane through the edge EF will intersect the inclined prism in two lines parallel to the inclined
edges as shown. Each of these inclined lines intersects the edge $E F$ so that the two points G and H are located. The edge $E F$ would be visible if the inclined prism was not in front of it. The two inclined lines, however, are on the back or invisible faces of the inclined prism and so are invisible. The points G and H are

Fig. 293 therefore invisible. A line joining two invisible points or one visible and one invisible point is invisible. Lines which are visible in one view may or may not be invisible in another, and should be considered separately.

Intersecting Cylinders. - Two intersecting cylinders are shown in Fig. 292. Divide the small cylinder into equal parts and then pass planes which will cut elements from both cylinders. The planes w, x, y, and z cut elements $1,2,3$, and 4 from the cylinders. The points in which elements in the same plane cross are shown in the front view at points 1, 2, 3, 4, etc., thus determining the curve of intersection. Use as many planes as are necessary to obtain a smooth curve.

Be sure to pass planes through the contour or outside elements of both cylinders in order to obtain the extreme limits of the curve. This is very important, especially when the axes of the cylinders do not intersect.

Choice of Cutting Planes. - Whenever possible planes should be passed so as to cut straight lines from both surfaces. The lines (not parallel) on the same plane intersect in points which are common to both surfaces and are therefore points in the curve of intersection. The intersection between surfaces can very often be found by horizontal cutting planes, as indicated
in Fig. 293, which would be employed for the cases presented in Fig. 294 and similar conditions. Considering Fig. 293 it will be observed that horizontal cutting planes are used. Each plane cuts a straight line from the prism and a circle from the cone,

as shown in the top view. Where the line and the circle cross is a point common to the prism and the cone. Other points found in the same way will complete the curve of intersection.

Connecting Rod Intersection. - Fig. 295 shows a portion of a connecting rod of circular cross section with a rectangular end.

The circular section is increased where it joins the rectangular portion. The curves of intersection are found as described. Notice that the centers for the radii $R_{1} R_{1}$ are in the same perpendicular line. $\quad D_{1}$ is the diameter of the rod. There are certain "critical points" and these will be mentioned first. Where R_{1} cuts the width of the rectangular part in the top view gives point a^{h} and this point will fall on the center line in the side view and so is projected to a^{v}. In a similar manner point b^{v} may be projected to the top view at point b^{h}. The end view is needed to obtain the other points. With O as a center and the corner distance $O C$ as a radius, draw the are $C C_{1}$. Continue the radius R_{1} in the side view. A horizontal line through C_{1} will intersect radius R_{1} at C_{2} from which C^{v} and C^{h} may be projected. The radius $O C$ gives the largest circle which will touch the rectangular section and so determines one end of the curve, as shown. A plane passed through C^{v} or to left of point C^{v} and perpendicular to the axis will give a rectangular section. A plane to the right of point C^{V} will give other sections which will be described.
To determine the curve in top view. Two points b and c are already determined. For any other point d in end view, draw an arc $d d_{1}$, with od as a radius. From d_{1} project horizontally to d_{2} and then as shown to d^{h} in the top view.
To determine the curve in the side view. Two points a and c are already determined. Take any point e in the end view and with a radius oe draw arc $e e_{1}$; project horizontally from e_{1} to e_{2}. The intersection of a vertical line through e_{2} with a horizontal line through e will give point e^{v}, a point on the desired curve. Point f and other points are found in the same manner. It will be observed that a plane through e and perpendicular to the axis would give the section indicated by section lines in the end view.

CHAPTER XVII

DEVELOPMENTS

Surfaces. - Surfaces may be divided into two classes, plane surfaces and curved surfaces. Plane surfaces show in their true size and shape when they are parallel to one of the planes of projection, so that an object bounded by plane surfaces can have each of its faces brought into contact with a piece of paper, either by wrapping the paper about the object or placing the

object on the paper and then turning it until each face has touched the paper. This is shown in Fig. 296 where the paper has been cut so it will exactly cover the object when it is folded about it. Such an outline is called a development. A curved surface does not show in its true size no matter how it is placed with regard to the planes of projection. Some kinds of curved surfaces can be developed by rolling them on a plane as illustrated in Fig. 297. The distance L is equal to the distance around the cylinder and the height H of course remains equal to the length of the cylinder. Other surfaces, such as the surface of a sphere, cannot be exactly developed, but there are approximate methods which are generally accurate enough.

Development of a Prism. - The prism of Fig. 296 is developed by laying out in a straight line and in the proper order the distances $1-4,4-3,3-2$, and 2-1, which added together are equal to the

distance around the prism. At each of the points a line is drawn cqual to the long edge of the prism and the ends joined together. Then the two ends of the prism are measured out as shown.

The development of the lateral surface of a hexagonal prism

is shown in Fig. 298. First lay off in a straight line and in proper order the edges $1-2,2-3$, etc., all the way around the prism as shown at the right. At points $1,2,3$, etc., draw the perpendiculars equal in length to the edges of the prism, thus obtaining the true size and shape of each face of the prism and in such order that
they might be folded to the form of the prism. Note that a square prism intersects the hexagonal prism which has been cut along the curve of intersection. To find the cut-out on the de-

velopment draw the vertical lines A, B, and C on the faces of the hexagonal prism and locate them on the development by measuring their distances from the edges 2 and 3. The points of inter-

section may then be located by drawing horizontal lines as shown or by measuring up or down the lines on the front view of the hexagonal prism and measuring the same distances on the same lines of the development. The development of the top and
bottom of the prism may be obtained from the top view and added to the lateral surface.

Development of a Cylinder. - The development of a cylinder was illustrated in Fig. 297. One half of a square elbow is developed in Fig. 299. First divide the top view into a number of equal parts. Through each point draw an elemen of the cylinder. By taking the elements close enough together the arcs may be considered as straight lines. The problem is then the same as
 developing a prism with a large number of sides. Lay off the distances between the elements along a straight line. At each point draw the element in its true length. Through the ends of the elements draw a smooth curve, very lightly freehand, and then brighten it up using the irregular curve. The lengths of the elements may be conveniently found by drawing horizontal lines from the front view as illustrated. The development of the bases may be found by an auxiliary view and from the top view.

Development of a Pyramid. - The development of a pyramid with a part cut away is shown in Fig. 300. Assume the pyramid to be complete. There are six equal faces, each one a triangle. The development consists in laying out all the faces in their true size and proper order. The short edges are shown in their true length in the top view as 1-2, 2-3, etc. The long edges are all of the same length and are equal to the distance $O^{\mathrm{v}}-1^{\mathrm{v}}$ shown in the front view. Observe that $O^{\mathrm{H}}-1^{\mathrm{H}}$ is horizontal in the top view. The faces may be constructed in their true size by drawing an are, with O_{1} as a center and $O^{\mathrm{v}} 1^{\mathrm{v}}$ as a radius. Starting at 1_{1}, space off the chords $1_{1}-2_{1}, 2_{1}-3_{1}$, etc., equal to $1^{\mathrm{H}}-2^{\mathrm{H}}, 2^{\mathrm{H}}-3^{\mathrm{H}}$, etc. Draw lines $O_{1} 1_{1}, O_{1} 2_{1}$, etc., representing edges of the pyramid. Construct the development of the base so that it may be folded into the proper position. Note carefully that the numbers on the base will match the numbers on the edges when the development is folded to form the pyramid. To show the part which

has been cut away measure the distance $O_{1} C_{1}$ on the edge O_{141} equal to the distance $O^{\mathrm{v}} C^{\mathrm{v}}$. Measure distances $5_{1} B_{1}$ and $3_{1} A_{1}$ on the development of the faces and of the base equal to the distances $5^{\mathrm{H}} B^{\mathrm{H}}$ and $\vartheta^{\mathrm{H}} A^{\mathrm{H}}$ obtained from the top view. Join points $A_{1} C_{1}$
and B_{1} on the development of the faces. On the development of the base construct the triangle $A_{1} B_{1} C_{1}$ obtaining distances $B_{1} C_{1}$ and $A_{1} C_{1}$ from the development of the faces. The completed development is shown by the heavy lines.

The Development of a Cone. - The development of a cone is shown in Fig. 301. Divide the base into a number of parts and draw elements of the cone. By taking the small ares as straight lines the solution is the same as for a pyramid. The surface is thus considered to be divided into a number of equal triangles. This method is sufficiently accurate for most purposes. With the radius R draw an arc of a circle. On the are space off the circumference of the base of the cone. The base need not be developed as it shows in its true size in the top view.

Development of a Transition Piece. - A transition piece is shown in Fig. 302 connecting a circular pipe with a rectangular one. The development of such á piece should present no difficulties if the previous figures have been carefully studied. Comparing the two views as given in Fig. 303 with the picture of Fig. 302, it will be seen that the transition piece may be "broken up" into triangles and parts of cones. The triangles are $A B 1$, $B C 5, C D 9$, and $D A 10$, The parts of cones are the curved surfaces between the triangles. Consider the apex of one cone as located at B. Divide the portion of the base $1-5$ into a number of parts and draw the elements $B-1, B-2, B-3, B-4$, and $B-5$. The triangles thus formed will approximate the surface of the cone. The lines $A B, B C$, etc. show in their true length in the top view. The true length of the elements may be found as follows: Consider a line to be dropped from point B perpendicular to the base of the cone. A line may then be drawn on the base of the cone from point 1 to the perpendicular line, thus forming a right triangle with the element $B-1$ as the hypotenuse. By constructing this right triangle in its true size the true length of $B-1$ may be found. This has been done in Diagram I. The length of the perpendicular line is shown at $B X$ and is found by drawing the horizontal lines shown. The base of the triangle is equal to the length of the horizontal projection of $B-1$. Point 1 in Diagram I is found by making $x-1$ equal to $B-1$. In the same way find the lengths of the other elements by laying off
$x-2$ equal to $B-2$
$x-3$ equal to $B-3$
etc., obtained from the top view. Then draw $B-2, B-3$, etc. the true lengths of the elements which are used in the construction described below. In the same manner construct Diagram II for the other cone. Having found all the true lengths proceed as follows: Construct the triangle $A B 1$, in its true size. With B as a center and $B 2$ as a radius, draw an arc. With 1 as a center and a radius equal to $1-2$ obtained from the top view describe another are cutting the first arc. This will locate point 2 . With B as a center and $B-3$ as a radius describe an arc. With 2 as a center and a radius equal to 2-3 obtained from the top view describe another arc, thus locating point 3. Proceed until the four triangles forming the conical surface are properly located, then draw a smooth curve through the points 1, 2, 3, etc. Construct triangle $C B 5$, using the element $B 5$ as a starting side. Then develop the conical surface having C as an apex and $5,6,7,8,9$, as part of the base. Construct the triangle CD9 in its true size. Since the piece is symmetrical the remaining parts are the same as those already developed.

All kinds of surfaces can be developed approximately by dividing them into triangles, then finding the true size of each triangle and arranging them in the proper relation to each other.

CHAPTER XVIII

PICTURE DRAWING

Isometric Drawing. - By means of an isometric projection three faces of an object can be shown in a single view. This is possible by considering the object to be placed in the position of a cube standing on one corner and having another corner exactly

in the center of the view. In Fig. 304 the cube is resting upon point A in such a position that point B is located in the center of

Fig. 306

Fig. 307
the view obtained by projecting onto a vertical plane. The orthographic projection of this front view is shown in Fig. 305, which is called the isometric projection of a cube. In this view
the line $A B$ is vertical and the lines $B C$ and $B D$ make angles of 30° with the horizontal. All the edges of the cube show equal to each other in length. This length however is shorter than

Fig. 308

Fig. 309
on the actual cube. For drawing purposes the lines $B D, B C$, and $B A$, etc. are made the same length as on the actual cube. The angles formed by the three lines which meet at point B are equal to 120° each. The three lines are called the isometric axes and form the basis for isometric drawing.

Fig. 3/I
Isometric and Non-isometric Lines. - All measurements for isometric drawings are taken along or parallel to the isometric axes. Lines parallel to the isometric axes are called isometric lines. All other lines are non-isometric lines and cannot be measured directly.

To make an Isometric Drawing of the Object shown in Fig. 306. - Draw the isometric axes, $B C, B A$, and $B D$ (Fig. 307).

From B measure $1^{1} / 4^{\prime \prime}$ toward $D, 1^{\prime \prime}$ toward C, and $7 / 8^{\prime \prime}$ toward A. From the points thus located draw lines parallel to the isometric axes and lay off distances corresponding to the figures given in

Fig. 312
Fig. 306. Note that lines which are parallel in Fig. 306 are parallel in Fig. 307.

To make an Isometric Drawing of the Object shown in Fig. 308. - Draw the isometric axes (Fig. 309) as in the preceding case. Locate the point F by measuring along BC. Locate point E by measuring along $B C$ and then down parallel to $B A$

Fig. 313

as indicated in the figure. Join F and E. Line $F E$ is a nonisometric line.

In Fig. 310 point E is located as before. Point T is located by measuring along $B C$ to point S and then parallel to line $B D$. It is often convenient to think of the object as being placed in a box. This box can be put into isometric and the points in which the object touches it located. Other points can be located by taking measurements parallel to the axes.
Angles. - Angles do not show in their true size in isometric drawings. This is evident from an inspection of Fig. 305 where
the angle at B is 120° and that at C is 60° although on the cube they are both 90°. The method of constructing for angles is shown in Fig. 311. First make the orthographic projection, then transfer by taking distances parallel to the axes, as H and L.

Positions of the Axes. - The axes may be placed in any position provided the angles between them are kept equal to 120° as illustrated in Fig. 312.

Fig. 317

Construction for Circles. - When circles occur they appear as ellipses and may be drawn by plotting points from the orthographic projection as in Fig. 313 or by the more usual approximation shown in Fig. 314, where the lines are drawn perpendicular to the points of tangency of the circumscribing square. The
intersections of these perpendiculars locate the centers for circular ares which will approximate the ellipse sufficiently close for most purposes. In the figure

$$
\begin{aligned}
& T_{1} T_{2} T_{3} T_{4}=\text { tangent points } \\
& C_{1}=\text { center for arc } T_{1} T_{2} \text { and } T_{3} T_{4} \\
& C_{1} T_{1}=\text { radius for arc } T_{1} T_{2} \text { and } T_{3} T_{4} \\
& C_{2}=\text { center for arc } T_{1} T_{4} \text { and } T_{2} T_{3} \\
& C_{2} T_{1}=\text { radius for arc } T_{1} T_{4} \text { and } T_{2} T_{3}
\end{aligned}
$$

The same construction is used for arcs of circles as shown in Fig. 315.

The interior of objects may be shown by means of isometric sectional views, Fig. 316 and Fig. 317, which are constructed by

Fig. 319
the methods already described for exterior views. As shown, the sectioned surfaces are taken on isometric planes.

Oblique Drawing. - Another method of picture drawing often useful is oblique drawing or projection, in which the view is obtained by using projection lines oblique to the plane upon which the object is to be represented. In Fig. 318 the orthographic projection of a cube is shown and, on the same plane, the oblique projection of the same cube. The three lines which meet at point B are called oblique axes. Lines $B C$ and $A B$ are always at right angles but the line $B D$ may make any convenient angle

with the horizontal. It follows that if one face of an object is parallel to the vertical plane, it will show in its true size and shape. After locating the axes the methods of construction given for isometric drawing apply to the making of oblique drawings. Many examples of oblique drawing are given throughout this book. The axes may be located in a variety of ways as shown in Fig. 319.

The appearance of an object can often be improved by reducing the measurements along the oblique axis, using one half or three fourths of the full dimension. Measurements on the two perpendicular axes remain unchanged. Two such treatments of a cube are shown in Fig. 320. Such views are called cabinet projection.

CHAPTER XIX

SHADE LINE DRAWINGS

Shade Lines. - The use of shade lines is a much discussed question. Each drawing has a purpose and if that purpose is better served by the use of shade lines they should be employed.

Fig. 321
In many lines of work detail drawings are never shaded and this seems to be the best practice. Outline drawings or assembly drawings which serve partly, at least, as picture drawings are often improved by shading.

System in Common Use. - In the United States a conventional system of shading is generally employed, in which the rays of light are assumed to be parallel, to come from the upper

Fig. 327

Fig. 328

Fig. 330

Fig. 331

Fig. 332
and left hand corner of the sheet at an angle of 45°, and to lie in the plane of the paper. The lower and right hand edges where the light passes over them are made heavy lines called shade lines. When two surfaces are in the same plane the line of divisiou between them is not shaded, Fig. 321. Circles follow the same
rules as shown, where A is a hole and B is a solid cylinder. In all cases the extra thickness of line is without the surface which

it bounds (C, Fig. 321). Most all conditions of shading are illustrated in the figures given in this chapter, which should be carefully studied.

Surface Shading. - Various methods of line shading on surfaces are used to show the shape of machine parts. Personal judgment is an important element in the matter of successful surface shading. Fig. 322 shows a cylinder shaded by using fine lines and varying the distances between them. These change approximatedy as the projections of equally spaced elements of a cylinder.

Fig. 336
Another method is to space the shade lines about equally but to vary the width of the lines as in Fig. 323. The air chambers (Figs. 324 to 328) show a number of different ways of shading conical, spherical, and cylindrical surfaces. As shown, either fine lines near together or varying lines may be used with any of the methods illustrated.

Shading Screw Threads and Gears. - On elaborate drawings

Fig. 337

Fig. 338
it is sometimes desirable to shade screw threads. Five ways are shown in Figs. 329 to 332.

When gears are to be shown without drawing in the teeth the exterior is frequently represented by alternating heavy and fine lines as in Figs. 333 and 334 which show a pair of bevel gears and a pair of spur gears. The rest of the drawing may or may not be shaded. A pair of bevel gears are shown in section in Fig. 335.

Special Surface Representations. - Other surfaces may be represented as in Figs. 336 to 338. Three ways of indicating a knurled surface are given in Fig. 336. For a scraped surface Fig. 337 may be used, and for a polished surface, Fig. 338.

Patent Office Drawing. - Probably the most general use of shaded drawings is for Patent Office work. Such drawings must
be made on pure white paper of a thickness equal to two or three ply Bristol board, using black ink. The outside dimensions of the sheet are 10 by 15 inches. Inside of this is a one inch margin. At the top of each sheet a clear space of one and one quarter inches must be left for a title which is printed in by the Patent

Fig. 339
Office. Fig. 339 shows the layout of a patent drawing. The fewest number of lines should be used; all dimension and center lines should be left off. The plane upon which a section is taken should be indicated. All parts are lettered or numbered. As these drawings are reproduced by the photo zinc process, all lines must be absolutely black and not too fine. If lines are too close together they will run together when printed. The "Rules of Practice" of the United States Patent Office may be had for the asking and should be consulted by those interested.

CHAPTER XX

DRAWING QUESTIONS, PROBLEMS, AND STUDIES

Most of the drawing studies included in this chapter can be worked in an $11^{\prime \prime} \times 14^{\prime \prime}$ space or in a division of the space as indicated in Figs. 340 to 343. The layout with dimensions for a regular size sheet is shown in Fig. 340. In some cases a large scale may be advisable in which case the full sheet may be used. An inspection of the problem will indicate the proper space where it is not given in connection with the problem. The order in

Fig. 340
which the problems are given can be varied to suit the needs of the class. The question of inking is left for the instructor to decide. The author advises that it be delayed until the student has attained considerable proficiency in making pencil drawings. A variety of problems is included to allow a selection to be made and so that the course may be varied from year to year. A number of answers to questions should be neatly written or
lettered and numerical problems should be carefully worked out to create a coördination between drawing and other subjects, as well as to impress the student with the fact that the mere drawing of lines is not the aim of a drawing course. It is thought

that such problems may create an interest and stir the student with the ambition to seek an engineering education.

1. Describe the proper use of the T square.
2. Show by a sketch the proper method of sharpening a lead pencil.
3. How are horizontal lines drawn?
4. How are vertical lines drawn?
5. Show by sketches the proper adjustment of the pen, pencil, and needle points for a compass.
6. Draw a straight line. Draw short lines crossing this line, and $2^{3} / 16^{\prime \prime}$ apart. Draw another short line crossing the original line, and $1^{9} / 16^{\prime \prime}$ from the last line drawn. From this lay off further distances of $1^{7} / 8^{\prime \prime}$ and $15 / 16^{\prime \prime}$. Add the four distances and check the total length by scaling the line. In measuring a line, place the zero of the scale opposite one end of the line and read the scale opposite the other end of the line.
7. Draw a straight line. Set the dividers at $9 / 16^{\prime \prime}$ and step off 10 spaces. Scale the distance thus found and check with the calculated length.
8. What is the purpose of the knee joints in the compasses?
9. Examine a drawing material catalog and list five tools in addition to those which you already have, that you would consider convenient for your work.
10. What kinds of pens are used for freehand lettering?
11. What kind of ink is used?
12. What is the slope for slant letters?
13. In what direction should the pen point?
14. How is the amount of ink on the pen regulated?
15. What hardness of pencil should be used for lettering?
16. How is the distance between letters regulated?
17. $11^{\prime \prime} \times 14^{\prime \prime}$ space. Starting $1 / 2^{\prime \prime}$ from top border line draw horizontal guide lines $3 / 8^{\prime \prime}$ apart. Use very light pencil lines. Make each capital letter of Fig. 15 or 16 five times. Repeat the letters which cause most trouble. Use $2 H$ pencil.
18. $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$ space. Starting $1 / 2^{\prime \prime}$ from top border line draw horizontal guide lines ${ }^{1} / \mathrm{s}^{\prime \prime}$ apart. Make each of the lower case letters of Fig. 15 or 16 five times. Height of letters a, c, e, etc. to be $1 / 4^{\prime \prime}$. Height of letter b, k, etc. to be $3 / 8^{\prime \prime}$. Use $2 H$ pencil.
19. $5^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$ space. Same as problem 18 , but use ball pointed pen.
20. $5^{1 / 2} 2^{\prime \prime} \times 7^{\prime \prime}$ space. Starting $1 / 2^{\prime \prime}$ from top border line draw horizontal guide lines $1 / 4^{\prime \prime}$ apart. Make each capital letter of Fig. 15 or 16 five times. Use $2 H$ pencil.
21. $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$ space. Same as problem 20, but use ball pointed pen.
22. $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$ space. Starting $1 / 2^{\prime \prime}$ from top of space draw horizontal guide lines $1 / 8^{\prime \prime}$ apart. Letter the following words, using a $2 H$ pencil: hill, late, lathe, bolt, quench, wrench, EqUIPMENT, TOOLS, CALIPERS
23. $5^{1} / 2^{\prime \prime} \times 7$ space. Same as problem 22, but using pen and ink as directed.
24. $5^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$ space. Draw horizontal guide lines near the middle of the space for letters having $1 / 8^{\prime \prime}$ caps. Letter the following, using a $2 H$ pencil. Use caps and lower case of Fig. 15 or 16.
"Drawing is the education of the eye, it is more interesting than words. It is the graphic language."
"Mechanical drawing is the alphabet of the engineer; without this the workman is merely a hand, with it he indicates the possession of a head."
25. Prepare a title and material list for the step bearing shown in Fig. 175.
26. Same as problem 24, but using pen and ink as directed by the instructor.
27. Name and illustrate three kinds of triangles.
28. Name and illustrate three kinds of quadrilaterals.
29. What is a right angle?
30. In order that the sills of a house may be square 6 feet has been measured off along one sill and 8 feet along the other. Nails are driven as in Fig. 344 at these points. What will be the distance $A C$ measured along a stecl tape when the angle $A B C$ is a right angle?
31. A circle has a diameter of 2 inches. What is its circumference? Compare this distance with the sum of the sides of an inscribed hexagon.
32. What is an ellipse?
33. Can a true ellipse be drawn with circular arcs?

34. Space $4^{5} / 8^{\prime \prime}$ wide, $5^{1 / 2^{\prime \prime}}$ high. Draw a line $2^{15} / 16^{\prime \prime}$ long and bisect it. See Fig. 32.
35. Space as for problem 34. Draw an angle and bisect it. See Fig. 33.
36. Space as for problem 34. Draw a line $2^{13} / 16^{\prime \prime}$ long and divide it into five equal parts, by method of Fig. 34.
37. Space as for problem 34. Same as problem 36, but use method of Fig. 35.
38. Space as for problem 34. Draw any angle and construct another angle equal to it. See Fig. 36.
39. Space as for problem 34. Construct a triangle, having sides as follows: $2^{5} / 8^{\prime \prime} ; 3^{1} / 8^{\prime \prime}$; and $2^{\prime \prime}$. See Fig. 37.
40. Space as for problem 34. Construct an equilateral triangle, one side $2^{9} / 16^{\prime \prime}$ long. Sec Fig. 38.
41. Space as for problem 34. Draw an isosceles triangle having a base of $2^{7} / 8^{\prime \prime}$. Sides make 75° with the base. Sce Fig. 28.
42. Space as for problem 34. Draw a right triangle. Hypotenuse $3^{1 / 2} 2^{\prime \prime}$ long. One angle is 30°.
43. Space as for problem 34. Mark three points (+) not in a straight line, and draw a circle passing through them. See Fig. 42.
44. Space as for problem 34. Draw an are of a circle. Radius $2^{\prime \prime}$, with center ${ }^{1} / 2^{\prime \prime}$ from upper and left hand edges of space. Make the angle $A O B$ (Fig. 43) equal to 45°. Find length of the arc. Use first method of Fig. 43.
45. Space as for problem 34. Same as problem 44, but use second method of Fig. 43.
46. Space as for problem 34. Draw a circle $2^{5} / 8^{\prime \prime}$ diameter. Draw a tangent at any point on the circumference. See Fig. 44.
47. Space as for problem 34. Draw an arc with a radius of $1^{1} / 4^{\prime \prime}$. Draw a straight line intersecting this arc. Draw an arc tangent to the arc and straight line just drawn, radius ${ }^{5} / 8^{\prime \prime}$. See Fig. 45.
48. Space as for problem 34. Draw a hexagon in a circle having a diameter of $2^{7} / \mathrm{s}^{\prime \prime}$. See Fig. 39.
49. Space as for problem 34. Draw a hexagon having a measurement across flats (Fig. 39) of $2^{1 /} / 4^{\prime \prime}$.
50. Space as for problem 34. Draw a regular octagon inside of a $3^{1} / 8^{\prime \prime}$ square, See Fig. 40.
51. Space as for problem 34. Draw a regular octagon inside of a $3^{1 / 8^{\prime \prime}}$ circle.
52. Space as for problem 34. Draw a right triangle having a hypotenuse $3^{\prime \prime}$ long, and one side $2^{\prime \prime}$ long. Draw a circle passing through the points of the triangle.
53. Space as for problem 34. Draw a line $3^{1 / 18^{\prime \prime}}$ long and divide it into parts proportional to 2,3 , and 5 . Use a method similar to Fig. 35.
54. Space as for problem 34. Use $30^{\circ} \times 60^{\circ}$ triangle and T square to draw a regular hexagon measuring $3^{7 / 16^{\prime \prime}}$ across corners.
55. Space as for problem 34. Using the 45° triangle and T square draw a regular octagon that will just contain a circle $3^{1} / 16^{\prime \prime}$ diameter.
56. Space $5^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$. Draw an ellipse by concentric circle method (Fig. 49). Major axis 5". Minor axis 2". Find 24 points.
57. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw an ellipse by trammel method (Fig. 50). Major axis $5^{1} / 4^{\prime \prime}$. Minor axis $2^{1} / 8^{\prime \prime}$.
58. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw a figure having the appearance of an ellipse by circular arcs, Fig. 51. $A B=5^{\prime \prime}, C D=2^{3} / 4^{\prime \prime}$.
59. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw a $3^{3} / 4^{\prime \prime}$ square in the center of the space. Draw an involute of this square.
60. Space $5^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$. Draw a semi-circle having its center $1 / 4^{\prime \prime}$ from the left edge of the space and $3^{1 / 4^{\prime \prime}}$ down from the top

of the space. Radius of circle $1^{3} / 4^{\prime \prime}$. Draw the involute of the semi-circle. See Fig. 53.
61. Space $5^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$. Draw a parabola, Fig. 54. Distance $A F=7 / 8^{\prime \prime}$. Directrix perpendicular.
62. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw a parabola, Fig. 54. Directrix horizontal. Distance $A F=1 / 4^{\prime \prime}$.
63. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw an equilateral hyperbola, Fig. 56. Point P is $1^{\prime \prime}$ from line $O G$ and $2^{1 /} / 8^{\prime \prime}$ from $O H$. Make distances $P A, A B$, etc. ${ }^{1} / 4^{\prime \prime}$.
64. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw the two views given and the side view of the prism, Fig. 345.
65. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw the two views given and the top view of Fig. 346.

66. Space $51 / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw the two views given and the top view of Fig. 347.
67. Space $5^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$. Draw the top, front, and side views of a regular hexagonal prism, Fig. 348. Corners of hex $2^{1} / 2^{\prime \prime}$. Height of prism $1 / 2^{\prime \prime}$.
68. Space $5^{1 / 22^{\prime \prime}} \times 7^{\prime \prime}$. Draw three views of the object shown in Fig. 349.
69. Space $5^{1 / 2} 2^{\prime \prime} \times 7^{\prime \prime}$. Draw three views of the object shown in Fig. 350.
70. Space $5^{1 / 22^{\prime \prime}} \times 7^{\prime \prime}$. Draw three views of the object shown in Fig. 351.
71. Space $5^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$. Draw

Fig. 353 three views of the object shown in Fig. 352.
72. Space $5^{1 / 2} 2^{\prime \prime} \times 7^{\prime \prime}$. Draw three views of the object shown in Fig. 353.

73. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw three views of the object shown in Fig. 354.
74. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw three views of the object shown in Fig. 355.
75. Space $5^{1 / 2} 2^{\prime \prime} \times 7^{\prime \prime}$. Draw three views of the object shown in Fig. 356.
76. Space $5^{1 / 2}{ }^{\prime \prime} \times 7^{\prime \prime}$. Draw three views of the object shown in Fig. 357.
77. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw three views of the object shown in Fig. 358.
78. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw three views of the object shown in Fig. 359.

79. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw three views of the object shown in Fig. 360.
80. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw three views of the object shown in Fig. 361.

show as in Fig. 367. The top view is obtained by projecting horizontally from the top view of Fig. 366 and vertically from the front view of Fig. 367. The front view of Fig. 367 is changed only in the position of the hopper. In the top view the distances parallel to the shaft $A A$ have not been changed, as the revolution has been about this axis. The side view of Fig. 367 is then obtained in the usual manner from the top and front views.

With the apparatus in the position of Fig. 367, it may be revolved about the shaft $B B$ forward or backward. In this case

the side view of Fig. 367 will be unchanged except for its position as shown in Fig. 368. After drawing the side view the front view may be drawn by projecting across from the side view and down from the front and top views of Fig. 367. This is possible because the horizontal distances in the front view are parallel to the shaft or axis of revolution. The top view is obtained from the other two views in the usual way.
85. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw three views of the hexagonal pyramid in the position shown in Fig. 369.
86. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw three views of the pyramid of Problem 85 after it has been revolved as shown in Fig. 370.
87. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw three views of the rectangular prism in the position shown in Fig. 371.
88. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw three views of the rectangular prism after it has been revolved from the position of Fig. 371 about a vertical axis. Top view is shown in Fig. 372.
89. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw three views and a complete auxiliary view of the square prism shown in Fig. 373, after it has been cut by plane $A-A$ and the part above the plane removed.

90 . Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw two views and a complete auxiliary view of the hexagonal prism shown in Fig. 374, after it has been cut by plane $A-A$.

91. Space $51 / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw the two views given and a complete auxiliary view, Fig. 375.
92. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw the two views given and a complete auxiliary view, Fig. 376.
93. Space $51 / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw a complete auxiliary view, Fig. 377.
94. Space $51 / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw a complete auxiliary view, Fig. 378.
95. Space $11^{\prime \prime} \times 14^{\prime \prime}$. Draw the two views shown and an auxiliary view of the foot pedal shown in Fig. 379.
96. Space $11^{\prime \prime} \times 14^{\prime \prime}$. Complete the views and draw an auxiliary view of the molding, Fig. 380.

97 . Why are sectional views used?
98. What is the relation of a sectional view to the other views?

99. Space $51 / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw a sectional view of Fig. 381 on a plane through the axis.
100. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw a sectional view of Fig. 382 on a plane through the axis.

101. Space $51 / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw a sectional view of Fig. 383 on a plane through the axis.
102. Space $51 / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw three views of Fig. 384, changing the proper view to a section on plane $A-A$.
103. Space $5 \frac{1}{2}{ }^{\prime \prime} \times 7^{\prime \prime}$. Draw two views of Fig. 385, changing the proper view to a section on plane $A-A$.

Fig. 382

104. Space $51 / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw three views of Fig. 386, changing the proper view to a section on plane $A-A$.
105. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw three views of Fig. 387, changing the proper view to a section on plane $A-A$.
106. Space $11^{\prime \prime} \times 14^{\prime \prime}$. Draw three views of the slide valve, Fig. 388. The missing view to be a section on plane $A-A$.
107. Draw three views of the shackle, Fig. 186.

VIEW

Fig. 388

108. Space $11^{\prime \prime} \times 14^{\prime \prime}$. Draw a plan view and a sectional elevation for the elliptical cover plate shown in Fig. 389. Outside dimensions $7^{\prime \prime} \times 9^{\prime \prime}$. Six ${ }^{11} / 16$ inch holes for bolts. The rise in the center is elliptical in plan. The bolts are to be spaced equal distances apart. Draw full size.
109. $11^{\prime \prime} \times 14^{\prime \prime}$ space. Draw two views of the crank shown in Fig. 390. This drawing is excellent as an inking or tracing exercise.

Fig. 390
110. Compare briefly wrought iron and cast iron.
111. What is cast iron? Name some of its properties. Compare its strength in tension and compression.
112. What is wrought iron? How is it made? Name some of its properties.
113. What is steel? How is it made? Name some of its properties.
114. What material is used for bolts and nuts?
115. How is malleable iron made and what is it used for?
116. Of what material would you make the following and why?
a. Steam Engine Cylinder.
b. Water Pump Plunger.
c. Piston-rod.
d. Complicated form of Lever.
e. Shaft.
117. What is meant by unit stress? Axial stress? Compression? Tension? Shear?
118. A tie-bar has a diameter of $7 / 8^{\prime \prime}$ and supports a load of 8000 pounds. What is the unit stress?
119. What load will a rectangular tension member measuring $3 / s^{\prime \prime} \times 1^{\prime \prime}$ carry safely if it is made of wrought iron? (Live load.)
120. A hollow cast iron cylinder has diameters of $4^{\prime \prime}$ and $3^{\prime \prime}$. What safe compressive load will it carry if the load is steady?
121. Compute the number of $3 / 4 / 4$ bolts for a cylinder head $15^{\prime \prime}$ effective diameter. Steam pressure is 150 pounds per square inch. Allowable working stress on bolts is 5000 pounds per square inch. The effective root area of a ${ }^{3} / 4^{\prime \prime}$ bolt is .302 square inches.
122. A wrought iron bolt $1^{1} / 2^{\prime \prime}$ diameter has a head $1^{1 / 4^{\prime \prime}}$ long. Its effective diameter is 1.284 . When a tension of 14000 pounds is applied to the bolt, find the unit stress.
123. What are some of the uses of screw threads?
124. What advantage has the acme thread over the square thread?
125. A triple threaded screw has a pitch of $1 / 3$ inch. How many turns must it make to move a nut 6 inches?
126. Express the following in terms of the diameter of the bolt; distance across flats of hex, thickness of bolt head, and thickness of nut.
127. In what way does a bolt head differ from a nut?
128. Draw a $1^{\prime \prime}$ hex nut across flats and a $1^{\prime \prime}$ square nut across corners. Compare them.
129. Space $5^{1 /} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw one turn each of two helices as started in Fig. 391.
130. Space $5^{1 /} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw the exterior of a square threaded screw $3^{\prime \prime}$ long which enters $1^{\prime \prime}$ into the section of a square threaded nut. Pitch $1^{\prime \prime}$. Other dimensions as in Fig. 392.

131. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw four forms of screw threads in section as directed by the instructor. $1^{\prime \prime}$ pitch. Fig. 393.
132. Space $51 / 2^{\prime \prime} \times 7^{\prime \prime}$. Fig. 394. At A, B, and C, draw three different plan views of threaded holes. At D and E draw two different representations of threaded holes in elevation. At F draw a threaded hole in section. At G, H, and I, draw three conventional representations of threaded bolt ends. Diameter for all representations to be 1 inch.
133. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. On axis $A-B$, Fig. 395, draw a $3 / 4^{\prime \prime}$ through bolt, hex head across corners and hex nut across flats. On axis $C-D$ draw a $11 / 8^{\prime \prime}$ bolt, hex head across flats and hex nut across corners. Indicate required dimensions.
134. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. On axis $A-B$, Fig. 396, draw a ${ }^{7} / s^{\prime \prime}$ bolt, square head across corners and square nut across flats.

On axis $C-D$ draw a ${ }^{7} / 8^{\prime \prime}$ cap screw, head across flats. On axis $E-F$ draw a ${ }^{7} / 8^{\prime \prime}$ cap screw, head across corners.
135. Space $5^{1 / 2 \prime} \times 7^{\prime \prime}$. Draw the two views of collar and

shaft, Fig. 397. On axis $A-B$ draw a ${ }^{5} / 8^{\prime \prime}$ set screw, head across flats. On axis $C-D$ draw same set screw, head across corners.
136. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw the gland and stuffing box of Fig. 398. On axis $A-B$ draw $a^{1} / 2^{\prime \prime}$ stud and nut. Show nut across flats. Make provision for the gland to enter one half the depth of the stuffing box when nut is screwed onto stud. Show required dimensions.
137. Draw a plan and section for a double riveted lap joint as directed by the instructor.

138. Make a scale drawing of two plates joined together at right angles.
139. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw sections on planes X and Y and a development of the riveted joint of Fig. 399. See Chapter VIII. $7 / 16^{\prime \prime}$ plates; ${ }^{15} / 16^{\prime \prime}$ rivets; pitch $2^{7} / 16^{\prime \prime}$; lap $1^{1} / 2^{\prime \prime}$; scale $3^{\prime \prime}=1$ foot.
140. How many views should a drawing contain?

Fig. 400
141. What scales are in general use for working drawings?
142. What are the first lines inked on a working drawing?
143. Is true projection always used? Explain.
144. Sketch and describe one form of stuffing box.
145. Space $11^{\prime \prime} \times 14^{\prime \prime}$. Make a working drawing showing three views of the slide valve shown in Fig. 400. One view may be a section. Completely dimension.
146. Space $11^{\prime \prime} \times 14^{\prime \prime}$. Make a working drawing of the bearing cap of Fig. 401. Show three views. Completely dimension. One view may be a section. Supply any missing dimensions. See Chapter XV for size of $1 / 4^{\prime \prime}$ pipe.

147. Make detail working drawings for the parts of the eccentric shown in Fig. 402. Supply any missing dimensions. Drawing should include a properly dimensioned bolt and set screw. Completely dimension the drawing.
148. Make detail working drawings for the parts of the step bearing shown in Fig. 175. Scale $6^{\prime \prime}=1$ foot. Use two sheets, $11^{\prime \prime} \times 14^{\prime \prime}$ space. Completely dimension.
149. Draw two views of Fig. 403. Each view should show true distances. Completely dimension. Submit a preliminary sketch to the instructor.
150. Make a working drawing for the piece shown in Fig. 404. Submit a preliminary sketch to the instructor.

151. Space $5^{1 / 22^{\prime \prime}} \times 7^{\prime \prime}$. Make a detail working drawing of the construction shown in Fig. 405, using one full view and such parts of other views as are necessary to define its true shape.

152. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Make a working drawing of the sleeve, Fig. 406. One half view to be in section.
153. Make a working drawing of the valve shown in Fig. 407. Show a proper treatment for a section on plane $A B C$.
154. Draw a sectional view of Fig. 408.
155. Make a detail drawing of the valve body of Fig. 409. One view in section.
156. Make an assembly drawing of the $2^{\prime \prime}$ check valve shown in Fig. 409. Draw a sectional elevation and an exterior end view. This drawing may or may not be dimensioned.
157. The filling-in piece, Fig. 410, is shown one half size. Scale the figure, draw full size, and completely dimension.
158. The guide, Fig. 411, is shown one half size. Scale the figure, draw full size, and completely dimension.

159. The bracket, Fig. 412, is shown one half size. Scale the figure, draw full size, and completely dimension.
160. The flywheel, Fig. 413, is shown one fourth size. Draw to a scale of $6^{\prime \prime}=1$ foot, and completely dimension.
161. The bearing, Fig. 414, is shown one half size. Scale the figure, draw full size, complete the views, and completely dimension.
162. Draw a half end view and a sectional elevation of the pump centerpiece, Fig. 415. Choose a proper scale and completely dimension.
163. Space $51 / 2^{\prime \prime} \times 7^{\prime \prime}$. Draw two views of the lever shown in Fig. 416. Both views are to show the true size of the lever.
164. Make detail drawings of each part of the screw stuffing box of Fig. 417. Note that dotted sectioning is used here to indicate the separate pieces. This method is sometimes used to show the exterior and section in the same view.
165. Make an assembly working drawing of the steam jacketed kettle shown in Fig. 418. Draw a half top view and a sectional

elevation. Such dimensions as are not given are to be supplied by the student. The required bolts are to be drawn and specified. The bosses for the pipe may be about twice the outside diameter
 of the pipe. Completely dimension the drawing. The outer casing is supported by four "feet" shown pictorially. The flange of the kettle rests upon the flange of the outer casing, and is bolted to it. Scale $1^{1} / 2^{\prime \prime}=1$ foot. Space $11^{\prime \prime} \times 14^{\prime \prime}$.
166. At what stage should the dimension

Fig. 412 lines be put on a drawing?
167. Make an assembly working drawing from the details of the connecting rod shown in Fig. 419. Draw one view in full and the

Fig. 413 other half in section and half full. Choose a suitable scale. If necessary a portion of the rod may be broken out. Supply required bolts for wedge

block. Submit sketch of treatment to instructor for approval. Completely dimension.
168. Make a drawing for the steam cylinder shown in Fig. 420 as follows. Sectional elevation on plane $A-A$; half top view; and section on plane $B-B$ looking toward the left. The three
views are to be properly located and completely dimensioned. Show depth of tapped holes. Supply any necessary dimensions that are not given in the figure. Choose a suitable scale.
169. Compute the weight of the Vee block shown in Fig. 335. Tabulate all figures.
170. Compute the weight of the cast iron foot for the steam kettle, Fig. 418. Tabulate all figures.
171. Compute the weight of the outer casing for Fig. 418.
 (cast iron). Tabulate all figures.
172. Compute the weight for the kettle, Fig. 418 (cast iron). Tabulate all figures.
173. Compute the weight of the cast iron pulley shown in Fig. 421. Tabulate all figures.
174. How is the diameter of wrought pipe specified?

175. Sketch a $2^{\prime \prime} \times 2^{\prime \prime} \times 1^{1} / 2^{\prime \prime}$ Tee, and mark the size on each opening.
176. Sketch a cross section of a standard pipe thread. Indicate any special features.
177. Draw two views of the piping shown in Fig. 422; one view as shown and the other in the direction of the arrow. Use a double line representation. See Chapter XV.
178. Space $7^{\prime \prime} \times 11^{\prime \prime}$. Find the curve of intersection between the two cylinders, Fig. 423.

179. Space $7^{\prime \prime} \times 11^{\prime \prime}$. Find the curve of intersection between the two cylinders, Fig. 424.
180. Space $5^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$. Find the intersection between the prisms of Fig. 425.
181. Space $51 / 2^{\prime \prime} \times 7^{\prime \prime}$. Find the intersection between the two prisms of Fig. 426.

182. Find the line of intersection between the two cylinders. (Fig. 294, first case.) Both diameters $1^{1 / 4^{\prime \prime}}$. Altitude $2^{1 / 4^{\prime \prime}}$. Axes intersect.
183. Same as Problem 182 but axes ${ }^{1} / 2^{\prime \prime}$ apart.
184. Find the intersection between two cones (Fig. 294, second case). Diameters $1^{1} / 8^{\prime \prime}$ and altitude $2^{3} / 8^{\prime \prime}$. Axes intersect.
185. Same as Problem 184 but with axes $1 / 2^{\prime \prime}$ apart.
186. Find the intersection of a cone and a cylinder (Fig. 294 third case). Diameter of cone $=11 / 2^{\prime \prime}$. Diameter of cylinder $=1^{1} / 4^{\prime \prime}$. Axes intersect. Altitude $2^{1} / 2^{\prime \prime}$.
187. Same as Problem 186 but with axes $1 / 2^{\prime \prime}$ apart.
188. Find the intersection of a cone and a cylinder (Fig. 294, fourth case). Diameter of cone $3^{\prime \prime}$. Altitude of cone $3^{\prime \prime}$. Diameter of cylinder $1^{\prime \prime}$. Axes intersect.
189. Same as Problem 188 but with axes ${ }^{1} / 2^{\prime \prime}$ apart.

190. Space $51 / 2^{\prime \prime} \times 7^{\prime \prime}$. Find the line of intersection between the cone and hexagonal prism of Fig. 427.
191. Space $5^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$. Find the line of intersection between the sphere and hexagonal prism of Fig. 428.

Fig. 430
192. Find the line of intersection between the cone and cylinder of Fig. 429.
193. Make a working drawing of the joint shown in Fig. 430. Find curves accurately.
194. Make a drawing for a connecting rod end (Fig. 295) with dimensions as follows. Instructor will assign dimensions.

I. $W=2^{1 /} / 2^{\prime \prime}$	$H=4^{\prime \prime}$	$D_{1}=1^{1 / 2} 2^{\prime \prime}$
II. $W=3^{\prime \prime}$	$H=3^{\prime \prime}$	$D_{1}=2^{\prime \prime}$
III. $W=$	$H=$	$D_{1}=$

	$\text { Fig. } 431$	
	Fig. 433	

195. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Develop the lateral surface of the rectangular prism, Fig. 431.
196. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Develop the lateral surface of the hexagonal prism, Fig. 432.

Fig. 439

Fig. 440

Fig. 441

Fig. 442

197. Space $51 / 2^{\prime \prime} \times 7^{\prime \prime}$. Develop the lateral surface and the upper surface of the cylinder, Fig. 433.
198. Space $51 / 2^{\prime \prime} \times 7^{\prime \prime}$. Develop the vertical piece of the square elbow, Fig. 434.
199. Space $5^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$. Develop the lateral surface of the pyramid, Fig. 435.
200. Space $5^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$. Develop the lateral surface of the frustum of a pyramid, Fig. 436.
201. Space $51 / 2^{\prime \prime} \times 7^{\prime \prime}$. Develop the lateral surface and the cut face of the hexagonal pyramid, Fig. 437.
202. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Develop the lateral surface of the pyramid, Fig. 438.
203. Find the area in square feet of the surface of the tent, Fig. 439.

Size	Width in Feet	Length in	Height in
I	7	7	Feet
II	9	12	7
	9		$71 / 2$

204. Find the area in square feet of the surface of the tent, Fig. 440.

Size	Height of Wall Feet	Length Feet	Width [Feet	Total Height Feet
I	3	7	7	7
II	$3^{1 / 2}$	16	12	$7^{1 / 2}$
III	4	20	14	9
IV	5	24	16	11

205. Find the area in square feet of the surface of the tent, Fig. 441.

| Size I | 7 feet square | 7 feet high |
| :--- | :--- | :--- | :--- |
| " | | |

206. Find the area in square feet of the surface of the tent, Fig. 442.

Size	Size of Base Feet		Size of Top Feet	Height at Center Feet	Height at Side Feet
I		square	$2^{1 / 2}$ square	$71 / 2$	6
II	8	8 "	3	8	$61 / 2$
III	10	"	$31 / 2$	9	$71 / 2$

207. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Develop the circular cone shown in Fig. 443. Start with element $A B$.
208. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Develop the part of the surface of cone above the plane $C D$, Fig. 444. Start with element $A B$.
209. Develop the portion of a conical surface shown in Fig. 445. First lay out the true length triangles. Then start with element $A B$.
210. Develop the transition piece of Fig. 446.
211. Develop the transition piece of Fig. 447.

212. Find the intersection of the two cylinders in the three views, Fig. 448. Develop each of the cylinders.
213. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Make an isometric drawing of the brass bushing shown in Fig. 175, in section. Full size.
214. Space $11^{\prime \prime} \times 14^{\prime \prime}$. Make an isometric drawing of the main casting of Fig. 175, in section. Full size.
215. Make an isometric drawing of Fig. 195. Dimensions as furnished by the instructor.
$D_{1}=[] D_{2}=[] D_{3}=[] D_{4}=[] D_{5}=[] D_{6}=[]$
$L_{1}=[] L_{2}=[] L_{3}=[] L_{4}=[] L_{5}=[] L_{6}=[]$
216. Space $51 / 2^{\prime \prime} \times 7^{\prime \prime}$. Make an isometric section of a [] diameter rivet and part of two plates each [] inches thick.

Dimensions will be furnished by instructor. For forms of rivets see Figs. 133, 134, and 135.
217. Space $5^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$. Make an isometric drawing of the object shown in Fig. 152. Scale $6^{\prime \prime}=1$ foot.
218. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Make a cabinet projection from Fig. 152. Scale $6^{\prime \prime}=1$ foot.
219. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. For scale of $6^{\prime \prime}=1$ foot. Space $11^{\prime \prime} \times 14^{\prime \prime}$ for full size. Make an isometric drawing of the bearing cap shown in Fig. 174.
220. Space $5^{1 / 2^{\prime \prime}} \times 7^{\prime \prime}$. Make an isometric drawing of Fig. 275. Scale $6^{\prime \prime}=1$ foot.
221. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Make an oblique drawing of Fig. 275. Scale $6^{\prime \prime}=1$ foot.
222. Make an oblique drawing of Fig. 273.
223. Make an oblique drawing in section of Fig. 276. Outside diameter $=4^{1} / 2^{\prime \prime}$. Width $=1$ inch.
224. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Make an oblique drawing in section of Fig. 277. Scale $6^{\prime \prime}=1$ foot.
225. Space $5^{1} / 2^{\prime \prime} \times 7^{\prime \prime}$. Make an isometric drawing in section of Fig. 277.
Shade lines may be used on most any of the problems at the discretion of the instructor.
226. Where should the extra thickness of a shade line be allowed for?

227. About how wide should the shade lines be compared with the fine lines on a shaded drawing.
228. Make a drawing of Fig. 449, half in section, and half exterior. On the exterior half represent the knurled surface.
229. Refer to Machinery, Power, American Machinist, or other technical papers and make a freehand copy of a simple drawing. Give reference, Paper Date Vol. No. Page Give your criticism, favorable and unfavorable. Consider choice of views; ease of reading and clearness; method of dimensioning; location of dimensions; notes and other information.

Inking Exercises. - Practice exercises are sometimes valuable as a means of teaching accuracy, and for inking practice. The following problems are designed for such purposes. They may be inked with all lines of uniform weight, or with fine and heavy lines as shown. Sharp pencil lines and a minimum of erasing should be insisted upon. When inking, no erasures should be allowed.
230. Exercise 1, Fig. 450. Lay out a $4^{\prime \prime}$ square. Divide the side $A C$ into 12 equal parts, using the bow spacers. Through each point draw horizontal lines using the T square.
231. Exercise 2, Fig. 450. Lay out a $4^{\prime \prime}$ square. Divide $C D$ into 12 equal parts with the dividers. Draw vertical lines through each point using a triangle and the T square.
232. Exercise 3, Fig. 450. Lay out a $4^{\prime \prime}$ square. Divide $A C$, $C D$, and $B D$ each into 6 equal parts. Draw $B C$. Draw lines through the points as shown, using the 45° triangle.
233. Exercise 4, Fig. 450. Lay out a $4^{\prime \prime}$ square. From each corner draw lines making 30° and 60° with the horizontal. Use the 30×60 triangle. Stop the lines so as to form the figure shown.
234. Exercise 5, Fig. 450. Lay out a $4^{\prime \prime}$ square. Divide $C D$ and $B D$ into 6 equal parts. Draw lines from point C to each

Fig. 450
point on line $B D$. Draw lines from point B to each point on line $C D$.
235. Exercise 6, Fig. 450. Lay out a $4^{\prime \prime}$ square. Divide $A B$ and $A C$ each into 12 equal parts. Draw very light horizontal and vertical lines through each point. Brighten up the lines so as to form the figure shown.
236. Exercise 7, Fig. 450. Lay out a $4^{\prime \prime}$ square, a $3^{1 / 4^{\prime \prime}}$ square, and a $2^{1} / 2^{\prime \prime}$ square as shown in the figure. Join the middle points of the $4^{\prime \prime}$ square. Join the middle points of the $31 / 4^{\prime \prime}$ square. Erase the lines which are not required.
237. Exercise 8, Fig. 450. Lay out a $4^{\prime \prime}$ square. Draw $A D$ and $B C$. Divide $A D$ and $B C$ each into 8 equal parts. Joir'
each point with the corners of the square. When inking be sure to draw toward the corners and allow each line to dry before drawing a second line.
238. Exercise 9, Fig. 450. Draw horizontal and vertical center lines. Using their intersection as a center draw a circle with a diameter of $4^{\prime \prime}$. Divide the radius into 6 equal parts. Through each point thus found draw circles as indicated.
239. Exercise 10, Fig. 450. Draw horizontal and vertical center lines. Draw concentric circles having diameters as follows: $4^{\prime \prime}, 3^{1} / 4^{\prime \prime}, 2^{1} / 2^{\prime \prime}, 1^{3} / 4^{\prime \prime}$, and $1^{\prime \prime}$. Divide the $2^{1} / 2^{\prime \prime}$ circle into 8 equal parts and using each point as a center draw small tangent circles having a diameter of $3 / 4^{\prime \prime}$ as shown in the figure.
240. Exercise 11, Fig. 450. Lay out a $4^{\prime \prime}$ square. Join the middle points of each side by lines $H F$ and $E G$. Using E, F, G, and H as centers, and a radius of $2^{\prime \prime}$, draw semicircles. Using same centers, and a radius of $1^{1} / 2^{\prime \prime}$, draw circle arcs. Erase lines not required to form the figure.
241. Exercise 12, Fig. 450. Lay out a $4^{\prime \prime}$ square. Round the corners with a $1 / 2^{\prime \prime}$ radius. Find point E, the center of the square. With E as a center, draw a circle having a radius of $1 / 2^{\prime \prime}$. With E as a center draw two semicircles, having radii of $3 / 4^{\prime \prime}$ and $1^{1} / 2^{\prime \prime}$. Join these semicircles with small circles having a radius of $3 / s^{\prime \prime}$. Complete the figure as shown.

INDEX

Acme thread, 42
Alternate sectioning, 76
Angles, 13
isometric, 132
Angle, to bisect, 16 to copy, 16
Approximate ellipse, 21
Ares and straight lines, 94
Ares, tangent, 18, 19
Arrow heads, 77
Assembly drawings, 66
A. S. M. E. sectioning, 30

Auxiliary views, 28
Axes, isometric, 133
oblique, 135
Bearings, sliding, 90
Bessemer process, 34
Bill of material, 12
Blue prints, 70
Bolts and screws, 48
Bolts, U. S. Stardard, 48
Butt joints, 58
Buttress thread, 42
Cabinet projection, 135
Calculations of weights of materials, 107
Calking, 59
Cap, nuts, 53
screws, 53
Castings, weights of, 106
Cast iron, 31
properties of, 32
Checking drawings, 85
Circle, involute of, 22
to draw through three points, 18
Circle arc, length of, 18
Circles, 14
isometric, 133
Commercial gothic letters, 7

Compasses, use of, 3
Cone, development of, 128
Cones, intersection of, 120
Connecting rod intersections, 121
Constructions, 13
Conventional representation of screw threads, 44
Cross hatching, 30
Curves, applications, 93
Cut surfaces, representation of, 30
Cutting plane, 30
Cutting plane, choice of, 120
Cylinder, development of, 126
Cylinder head, weight of, 109
Cylinders, intersection of, 120
Detail drawings, 62
special, 63
Development of cone, 128
of cylinder, 126
of prism, 124
of pyramid, 126
of transition piece, 128
Developments, 123
Diagram drawings, 68
sketches, 104
Dimensioning, 77
elements of, 78
general rules, 79
shafting, 83
small parts, 85
systems, 80
tapers, 84
Dimension lines, 77
Dimensions, location of, 81
of pipe fittings, 115
of pipe flanges, 116
of standard pipe, 114
purpose of, 77
Dividers, use of, 4
Dotted lines, 27

Dotted sections, 163, 167
Drawing, cabinet, 135
isometric, 130
oblique, 135
picture, 130
Drawing, isometric, 130
Drawings, assembly, 66
assembly working, 66
checking, 85
detail, 62
diagram, 68
erection, 66
how to make, 65
how to make isometric, 131
outline, 66
part assembly, 66
patent office, 139
purpose of, 23
shade line, 136
show, 68
special detail, 63
working, 62
Drilling for flanges, 69, 82, 95
Drills, 87
Elastic limit, 37
table, 38
Elasticity, modulus of, 37
Ellipse, 19, 20, 21
approximate, 21
tangent to, 19
Engine, parts of steam, 88
Equilateral triangle, 17
Erection drawings, 66
Estimation of weights, 105
of castings, 106
of forgings, 111
of loose materials, 106
Exceptions to true projection, 69
Factor of safety, 37
table of, 39
Fillets, 93
Finish, methods of indicating, 78, 85
Fittings, pipe, 112, 113
Flange edges, 95
Flanged projections, 94

Flanges, dimensions of pipe, 116 drilling, 69, 82, 95
Flanges and bolting, 95
Forgings, weights of, 111
Forms of letters, 8
Gears, shading of, 139
Geometry, 13
Glands, 92
Gray iron, 31
Helix, 40
Hexagon, to construct, 17
Hyperbola, 22
Imaginary cutting plane, 30
Inking, exercises, 178
order of, 65
Instruments, drawing, 1
measuring, 100
Intersections, 117
connecting rod, 121
cylinders, 120
prisms, 118
visibility of, 119
Invisible surfaces, representation of, 27
Involute, of circle, 22
of triangle, 21
Iron, cast, 31
malleable, 34
wrought, 33
Isometric axes, 133
drawing, 130
drawing, how to make, 131
Joints, butt, 58
lap, 57
Keys, 96
Knuckle thread, 41
Lap joints, 57
Left-hand screw, 41
Lettering, 7
Letter spacing, 10
Line, to bisect, 15
to divide into equal parts, 16
Line shading, 137, 139

Lines, arcs and straight, 94
character of, 5
dotted, 27
dimension, 77
isometric, 131
non-isometric, 131
of intersection, 117
shade, 136
Loads and stresses, 35
Locking devices, 54
Lower case letters, 7
Machine construction, 87
operations, 87
screws, 52
Malleable iron, 34
Material, bill of, 12
Materials, 31
drawing, 1
for sketching, 99
piping, 112
selection of, 35
weights of, 105
Measurements, instruments used for, 100
Methods of finish, 85
Modulus of elasticity, 37
table of, 38
Multiple threads, 43
Nasmith, James, 98
Nuts, cap, 53
lock, 54
standard, 48-50
Oblique drawing, 135
Octagon, to construct, 18
Open-hearth process, 34
Osborn system, 61
Parabola, 22
Patent office drawings, 139
Pen, use of ruling, 4
Pencils, drawing, 3
Picture drawings, 130
Pipe, standard, 114
Pipe conventional representation, 113
dimensions of, 115

Pipe fittings, 112, 113
Pipe flanges, dimensions of, 116
Pipe threads, 114
Piping, 112
Piping materials, 112
Pistons, parts of, 89
Plane, cutting, 30
Plane figures, 14
Planes, cutting, 120
Planes of projection, 24
Plunger barrel, weight of, 110
Prism, development of, 124
Prisms, intersection of, 118
Problems, 141
Projection, exceptions to, 69
Projections, orthographic, 23
rules for, 25
Proportions and forms of letters, 8
Proportions of U. S. Standard bolts, 48-50
Pyramid, development of, 126

Questions, problems and studies, 141

Representations, surface, 139
Revolutions, 150
Ribs, sections of, 75
Rivet heads, 57
Riveting, 57, 58
Rivet spacing, 61
Rolled steel shapes, 61
Rounds, 93
Ruling pen, use of, 4
Scale, use of, 2
Screw, parts of, 41
Screws, right and left hand, 41
Screw threads, conventional representation, 44
forms of, 41
shading of, 139
strength of, 46
uses of, 40
Sections, 71
broken, 72
conventional, 74

Sections, dotted, 163, 167
revolved, 72
rib, 75
symmetrical parts, 75
Sectional views, dotted lines on, 75
extra, 74
location of, 72
Set screws, 53
holding power, 53
Shade line drawings, 136
Shading, line, 137
Shafting, dimensioning of, 83
nominal diameters of, 83
Sharpening pencils, 3
Show drawings, 68
Sketches, diagram, 104
Sketches, uses of, 98
Sketching, 98
general rules, 102
materials for, 99
procedure in, 100
taking measurements for, 100
Sliding bearings, 90
Small parts, dimensioning of, 85
Solids, geometrical, 15
Split nut and square thread, 44
Square thread, 42
Standard pipe, 114
dimensions of, 114
Steam engine, parts of, 88
Steel, 34
properties of, 34
rolled shapes, 61
Steel plate connections, 60
Strength of screw threads, 46
Strength, ultimate, 37
Stresses, axial, 35
unit, 36
Studs, 51
Stuffing boxes, 92
Surfaces, 123
Surface shading, 139
representations, 139
Symmetrical parts, sections of, 75
System of shading, 137
Table, depth of tapped holes, 56

Table, elastic limits, 38
factors of safety, 39
moduli of elasticity, 38
ultimate strength, 38
U. S. Standard bolts, 55
U. S. Standard threads, 47

Tangent arcs, 18, 19
Tangent to an ellipse, 19
Tap bolts, 50
Tapers, dimensioning of, 84
Tapped holes, depth of, 56
Taps, 51
Threaded holes, 45, 51
Threads, pipe, 114
Through bolts, 50
Titles, 10
Tracing, 65
Trammel method for ellipse, 20
Transition piece, development of, 128
Triangle, to construct, 17
involute of, 21
use of, 1
T square, use of, 1
Ultimate strength, 37
table of, 38
Unit strain, 37
Unit stresses, formula for, 36
U. S. Standard bolts, 48
U. S. Standard thread, 41
table, 47
Views, auxiliary, 28
required, 29
Wear and pressure, 91
Weight of cylinder head, 109
of plunger barrel, 110
Weight of materials, method of calculation, 107
Weights of castings, 106
of forgings, 111
of materials, 105
White iron, 31
Whitworth thread, 42
Working drawings, 62
Wrought iron, 33
propertics of, 33

D. VAN NOSTRAND COMPANY

25 PARK PLACE

NEW YORK

SHORT-TITLE CATALOG

OF

|Jublications and Importations

 OF
SCIENTIFIC AND ENGINEERING

 BOOKS

This list includes
the technical publications of the following English publishers:
SCOTT, GREENWOOD \& CO. JAMES MUNRO \& CO., Ltd. CONSTABLE\&COMPANY,Ltd. TECHNICAL PUBLISHINGCO. BENN BROTHERS, Ltd.
for whoı 1 D. Van Nostrand Company are American agents.

SHORT=TITLE CATALOG

OF THE

Publications and Importations

OF

D. VAN NOSTRAND COMPANY 25 PARK PLACE, N. Y.

All Prices in this list are NET. All bindings are in cloth unless otherwise noted.

Abbott, A. V. The Electrical Transmission of Energy. 8vo, *\$500

- A Treatise on Fuel. (Science Series No. 9.) - 75
-Testing Machines. (Science Series No. 74.) - 75
Abraham, Herbert. Asphalts and Allied Substances 5 oo
Adam, P. Practical Bookbinding. Trans. by T. E. Maw ${ }^{*} 20$
Adams, H. Theory and Practice in Designing. * 25
Adams, H. C. Sewage of Sea Coast Towns. 250
Adams, J. W. Sewers and Drains for Populous Districts 250
Addyman, F. T. Practical X-Ray Work 500
Adler, A. A. Theory of Engineering Drawing. ${ }^{*} 200$
——Principles of Parallel Projecting-line Drawing * 100
Aikman, C. M. Manures and the Principles of Manuring. 250
Aitken, W. Manual of the Telephone. *8 00
d'Albe, E. E. F.; Contemporary Chemistry * 25
Alexander, J. Colloid Chemistry. 100
Alexander, J. H. Elementary Electrical Engineering 250
Allan, W. Strength of Beams Under Transverse Loads. (Science Series No. 19.) - 75
- Theory of Arches. (Science Series No. ir.) 16mo,
Allen, H. Modern Power Gas Producer Practice and Applications. 12mo, * 250
Anderson, J. W. Prospector's Handbook. I 50
Andés, L. Vegetable Fats and Oils. * 600
- Animal Fats and Oils. Trans. by C. Salter * 500
———Drying Oils, Boiled Oil, and Solid and Liquid Driers *6 00
-- Iron Corrosion, Anti-fouling and Anti-corrosive Paints. Trans. byC. Salter. 8vo,*6 00-Oil Colors, and Printers' Ink. Trans. by A. Morris and H.Robson. 8vo,*4 00
——Treatment of Paper for Special Purposes. Trans. by C. Salter.
Andrews, E. S. Reinforced Concrete Construction. 12 mo ,
- Theory and Design of Structures 8vo,
-..- Further Problems in the Theory and Design of Structures 8 vo ,
- The Strength of Materials.... * 400
Andrews, E. S., and Heywcod, Fi. B. The Calculus for Engineers. 12mo, *200 900 *300 *2 00 *3 50 *2 50
900
Annual Reports on the Progress of Chemistry. Twelve Volumes now ready. Vol. I., 1ge!̣, Vol. XII., 1914................... . 8 vo , each, $*_{2} 00$
Argand, M. Imaginary Quantities. Translated from the French by A. S. Hardy. (Science Series No. 52.) r6mo, 075
Armstrong, R., and Idell, F. E. Chimneys for Furnaces and Steam Boilers. (Science Series No. т.)... 16 mo , - 75
Arnold, E. Armature Windings of Direct-Current Dynamos. Trans. by F. B. DeGress . 8vo,Asch, W., and Asch, D. The Silicates in Chemistry and Commerce. 8vo,*6 оо
Ashe, S. W., and Keiley, J. D. Electric Railways. Theoretically and Practically Treated. Vol. I. Rolling Stock.................. I2mo, *2 50
Ashe, S. W. Electric Railways. Vol. II. Engineering Preliminaries and Direct Current Sub-Stations.......... 2 mo ; *2 50
-- Eleetricity: Experimentally and Practically Applied............12mo, * 200
Ashley, R. H. Chemical Calculations. *2 0
Atkins, W. Common Battery Telephony Simplified. *I 25
Atkinson, A. A. Electrical and Magnetic Calculations * 50
Atkinson, J. J. Friction of Airin Mines. (Science Series No. 14.). 16mo, - 75
Atkinson, J. J., and Williams, Jr., E. H. Gases Met with in Coal Mines. (Science Series No. 13.)... 16 mo , - 75
Atkinson, P. The Elements of Electric Lighting. I co
- The Elements of Dynamic Electricity and Magnetism. 200
- Power Transmitted by Electricity 200
Auchincloss, W. S. Link and Valve Motions Simplified. * 50
Austin, E. Single Phase Electric Railways. *5 00
Austin and Cohn. Pocketbook of Radiotelegraphy............ (In Press.)
Ayrton, H. The Electric Arc. 550
Bacon, F. W. Treatise on the Richards Steam-Engine Indicator . . I2mo, 100
Bailey, R. D. The Brewers' Analyst. *5 00
Baker, A. L. Quaternions. *I 25
- Thick-Lens Optics *I 50
Baker, Benj. Pressure of Earthwork. (Science Series No. 56.)...16mo,Baker, G. S. Ship Form, Resistance and Screw Propulsion...... 8vo,Baker, I. O. Levelling. (Science Series No. 9r.).................. 6 mo ,
Baker, M. N. Potable Water. (Science Series No. 6r.)16mo,
075${ }^{*} 450$- Sewerage and Sewage Purification. (Science Series No. 18.).16mo,
Baker, T. T. Telegraphic Transmission of PhotographsI2mo, *I 25
Bale, G. R. Modern Iron Foundry Practice. 12 mo .Vol. I. Foundry Equipment, Materials Used.*3 oo
Ball, J. W. Concrete Structures in Railways. ${ }^{*} 50$
Ball, R. S. Popular Guide to the Heavens. *5 00
-. Natural Sources of Power. (Westminster Series.) ${ }^{*} 200$
Ball, W. V. Law Affecting Engineers *3 5 c
Bankson, Lloyd. Slide Valve Diagrams. (Science Series No. 108.) 16 mo , - 75
Barham, G. B. Development of the Incandescent Electric Lamp..8vo, 250
Barker, A. F. Textiles and Their Manufacture. (Westminster Series.) 8vo, 200
Barker, A. F., and Midgley, E. Analysis of Woven Fabrics...... 8vo, 350
Barker, A. H. Graphic Methods of Engine Design. 200
- Heating and Ventilation .4to, *8 00
Barnard, J. H. The Naval Militiaman's Guide............. $16 m 0$, leather I 00
Barnard, Major J. G. Rotary Motion. (Science Series No. go.). . гбmo, - 75
Barnes, J. B. Elements of Military Sketching 075
Barrus, G. H. Engine Tests 400
Barwise, S. The Purification of Sewage 350
Baterden, J. R. Timber. (Westminster Series.) 8vo, *2 00
Bates, E. L., and Charlesworth, F. Practical Mathematics and Geometry. 12mo,
Part I. Preliminary and Elementary Course ${ }^{*}{ }^{1} 5^{0}$
Part II. Advanced Course. 5°
- Practical Mathematics. * 2 oo
- Practical Geometry and Graphics. 200
Batey, J. The Science of Works Management *2 00
- Steam Boilers and Combustion 200
Bayonet Training Manual - 30
Beadle, C. Chapters on Papermaking. Five Volumes........12mo, each, 200
Beaumont, R. Color in Woven Design. *6 00
——Finishing of Textile Fabrics. *5 oo
- Standard Cloths *6 оо
Beaumont, W. W. The Steam-Engine Indicator 250
Fechhold, H. Colloids in Biology and Medicine. Trans. by J. G. Bullowa 5 oo
Beckwith, A. Pottery 8vo, paper, - 60
Bedell, F., and Pierce, C. A. Direct and Alternating Current Manual.
Beech, F. Dyeing of Cotton Fabrics. 200 200
——Dyeing of Woolen Fabrics. 8vo, *3 50
Beggs, G. E. Stresses in Railway Girders and Bridges (In Press.)
Begtrup, J. The Slide Valve. $8 \mathrm{vo}, *_{2} 00$
Bender, C. E. Continuous Bridges. (Science Series No. 26.)....r6m0, - 75
__ Proportions of Pins used in Bridges. (Science Series No. 4.)
1бmo, o 75
Bengough, G. D. Brass. (Metallurgy Series.)............. (In Press.)
Bennett, H. G. The Manufacture of Leather........................ 8 vo , *5 оо
Bernthsen, A. A Text-book of Organic Chemistry. Trans. by G. M'Gowan *3 оо
Bersch, J. Manufacture of Mineral and Lake Pigments. Trans. by A. C. Wright 600
Bertin, L. E. Marine Boilers. Trans. by L. S. Robertson. 500
Beveridge, J. Papermaker's Pocket Book ${ }^{*} 4$ or
Binnie, Sir A. Rainfall Reservoirs and Water Supply. 300
Binns, C. F. Manual of Practical Potting. 3 oo
—— The Potter's Craft *2 0
Birchmore, W. H. Interpretation of Gas Analysis ${ }^{*}$ r 25
Blaine, R. G. The Calculus and Its Applications. * 75
Blake, W. H. Brewers' Vade Mecum * 400
Blanchard, W. M. Laboratory Exercises in General Chemistry.. i2mo, 100
Blasdale, W. C. Quantitative Chemical Analysis. (Van Nostrand's Textbooks.) ${ }^{*} 250$
Bligh, W. G. The Practical Design of Irrigation Works 8vo,
Bloch, L. Science of Illumination. Trans. by W. C. Clinton. 8vo, 50
Blok, A. Illumination and Artificial Lighting...................ımo, oo
Blücher, H. Modern Industrial Chemistry. Trans. by J. P. Millingion.
800, *7 5^{0}
Blyth, A. W. Foods: Their Composition and Analysis 750
Poisons: Their Effects and Detection. 850
Böckmann, F. Celluloid * 20
Bodmer, G. R. Hydraulic Motors and Turbines 500
Boileau, J. T. Traverse Tables 500
Bonney, G. E. The Electro-platers' Handbook I 50
Booth, N. Guide to the Ring-spinning Frame. *2 00
Booth, W. H. Water Softening and Treatment *2 50
- Superheaters and Superheating and Their Control $8 \mathrm{vo},{ }^{*} \mathrm{I} 50$
Eottcher, A. Cranes: Their Construction, Mechariical Equipment and Working. Trans. by A. Tolhausen ato, *io 00
Bottler, M. Modern Bleaching Agents. Trans. by C. Salter....i2mo, *2 50
Bottone, S. R. Magnetos for Automobilists 12mo, *I 00
- Electro-Motors, How Made and How Use. 100
Boulton, S. B. Preservation of Timber. (Science Series No. 82).i6mo, 75
Bourcart, E. Insecticides, Fungicides and Weedkillers. *6 oo
Bourgougnon, A. Physical Problems. (Science Series No. irз.). I6mo, $\circ 75$
Bourry, E. Treatise on Ceramic Industries. Trans. by A. B. Fearle. 8vo (In Press.)
Bowie, A. J., Jr. A Practical Treatise on Hydraulic Mining 8vo, 500
Bowls, O. Tables of Common Rocks. (Science Series No. 125.). I6mo, - 75
Bowser, E. A. Elementary Treatise on Analytic Geometry 12 mo , 75
- Elementary Treatise on the Differential and Integral Calculus 225
——Elementary Treatise on Analytic Mechanics 300
—— Elementary Treatise on Hydro-mechanics 250
-. A Treatise on Roofs and Bridges *2 25
Bovcott, G. W. M. Compressed Air Work and Diving............8vo, * 425
Bradford, G. Whys and Wherefores of Navigation. 200
—_Sea Terms and Phrases................12mo, fabrikoid (In Press.)
Bragg, E. M. Marine Engine Design. 12 mo , *2 00
——Design of Marine Engines and Auxilaties.................... 8vo, *3 00
Brainard, F. R. The Sextant. (Science Series No. iol.) 16mo,
Brassey's Naval Annual for 1915. War Edition...................8vo, 400
Briggs, R., and Wolff, A. R. Steam-Heating. (Science Series No. 68.) 16mo, - 75
Bright, C. The Life Story of Sir Charles Tilso.1 Bright..........8vo, *4 50
-Telegraphy, Aeronautics and War................................. 8 ve, 600
Brislee, T. J. Introduction to the Study of Fuel. (Outlines of Indus- trial Chemistry.) :. 8vo, *3 oo
Broadfoot, S. K. Motors: Secondary Batteries. (Installation Manuals Series.) *o 75
Broughton, H. H. Electric Cranes and Hoists
Brown, G. Healthy Foundations. (Science Series No. .80.)....I6mo, o 75
Brown, H. Irrigation... 8vo, *5 00
Brown, H. Rubber. 8vo,
W. A. Portland Cement Industry. 8vo,
Brown, Wm. N. Dipping, Burnishing, Lacquering and Bronzing
Brass Ware .. 12 mo ,
-Handbook on Japanning. * 50 *2 00
Brown, Wm. N. The Art of Enamelling on Metal. ${ }^{*} 200$
——House Decorating and Painting...................................ino, *2 00History of Decorative Art... . 12 m 0Workshop Wrinkles .. 8 vo ,
Browne, C. L. Fitting and Erecting of Engines.....................8vo,Browne, R. E. Water Meters. (Science Series No. 8i).......... 6 mo ,Bruce, E. M. Detection of Common Food Adulterants............irmo,* 50* 10Brunner, R. Manufacture of Lubricants, Shoe Polishes and LeatherDressings. Trans. by C. Salter............................. 8 . vo ,
Buel, R. H. Safety Valves. (Science Series No. 21.)............16mo,* 350Bunkley, J. W. Military and Naval Recognition Book.5 75
Burley, G. W. Lathes. Their Construction and Operation.....ramo, 200I 00
-_Machine and Fitting Shop Practice. 200
- Testing of Machine Tools. 00
Burnside, W. Bridge Foundations
Burstall, F. W. Energy Diagram for Gas. With Text.............. 8vo, 50
-D Diagram. Sold separately * 100
Burt, W. A. Key to the Solar Compass 16mo, leather, 50
Buskett, E. W. Fire Assaying.Butler, H. J. Motor Bodies and Chassis.* 25*3 0
Byers, H, Gı, and Knight, H. G. Notes on Qualitative Analysis.....8vc, * 50
Cain, W. Brief Course in the Calculus * 75
——Elastic Arches. (Science Series No. 48.) 75
- Maximum Stresses. (Science Series No. 38.) 75
—— Practical Designing Retaining of Walls. (Science Series No. 3.)16mo,
-- Theory of Steel-concrete Arches and of Vaulted Structures.(Science Series No. 42.).................................... 6 mo,
- 75_-Theory of Voussoir Arches. (Science Series No. 12.) 6 mo ,
075
__Symbolic Algebra. (Science Series No. 73.)................... 6 mo ,
Calvert, G. T. The Manufacture of Sulphate of Ammonia and - 75Crude Ammonia
400
Carey, A. E., and Oliver, F. W. Tidal Lands. 500
Carpenter, F.D. Geographical Surveying. (Science Series No. 37.).16mo, Carpenter, R. C., and Diederichs, H. Internal Combustion Engines. . 8vo, 500Carter, H. A. Ramie (Rhea), China Grass..........................ımo,Carter, H. R. Modern Flax, Hemp, and Jute Spinning...........8vo,
_—Bleaching, Dyeing and Finishing of Fabrics..................8vo,
3 00: 50
Cary, E. R. Solution of Railroad Problems with the Slide Rule.. I6mo, * 100
I 00Casler, M. D. Simplified Reinforced Concrete Mathematics.......r2mo,Cathcart, W. L. Machine Design. Part I. Fastenings 8vo,Cathcart, W. L., and Chaffee, J. I. Elements of Graphic Statics . . .8vo,——Short Course in Graphics . 12 mmo ,
* 100 100*3 00*3 00
I 50
- R. M, and Ger. Caven, R. M., and Lander, G. D. Systematic Inorganic Chemistry.I2mo, *2 00
Chalkley, A. P. Diesel Engines 400
Chalmers. T. W. The Production and Treatment of Vegetable Oils, 4to, 750
Chambers' Mathematical Tables I 75 8vo,
Chambers, G. F. Astronomy I 50
Chappel, E. Five Figure Mathematical Tables. 8vo,
Charnock, Mechanical Technology 3vo,
Charpentier, P. Timber. 8vo, 6- 75
D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG
Chatley, H. Principles and Designs of Aeroplanes. (Science Series No. 126.) 16 mo , - 75
__ How to Use Water Power. I2mo, * 50
Gyrostatic Balancing * 125
Child, C. D. Electric Arc. $8 \mathrm{vo}, *_{2} 00$
Christian, M. Disinfection and Disinfectants. Trans. by Chas.
Salter 121 no, 250
Christie, W. W. Boiler-waters, Scale, Corrosion, Fc ning 8vo,
- Chimney Design and Theory 8vo, *3 00
——Furnace Draft. (Science Series No. 123.)....16mo, 075
-- Water: Its Purification and Use in the Industries. 8vo, *2 00
Church's Laboratory Guide. Rewritten by Edward Kinc. ${ }^{p}, \ldots .$. * 50
Clapham, J. H. Woolen and Worsted Industries. 200
Clapperton, G. Practical Papermaking 250
Clark, A. G. Motor Car Engineering.
Vol. I. Construction. ${ }^{*} 400$
Vol. II. Design 8vo, *3 50
Clark, C. H. Marine Gas Engines. New Edition 200
Clark, J. M. New System of Laying Out Railway Turnouts i2mo, I 00
Clarke, J. W., and Scott, W. Plumbing Practice.
Vol. I. Lead Working and Plumbers' Materials. $*_{4} 00$
Vol. II. Sanitary Plumbing and Fittings. s. (In Press.)
Vol. III. Practical Lead Working on Roofs. (In Press.)
Clarkson, R. P. Elementary Electrical Engineering (In Press.)
Clausen-Thue, W. A B C Universal Commercial Telegraphic Code.Sixth Edition.(In Press.)
Clerk, D., and Idell, F. E. Theory of the Gas Engine. (Science SeriesNo. 62.) . Iбmo,075
Clevenger, S. R. Treatise on the Method of Government Surveying. I6mo, morocco, 25 C
Clouth, F. Rubber, Gutta-Percha, and Balata
Cochran, J. Concrete and Reinforced Concrete Specifications...... 8vo, *2 50б 00
- Treatise on Cement Specifications.
Cocking, W. C. Calculations for Steel-Frame Structures........I2mo,*2 50
Coffin, J. H. C. Navigation and Nautical Astronomy..............ımo, 300
Colburn, Z., and Thurston, R. H. Steam Boiler Explosions. (Science Series No. 2.) - 75
Cole, R. S. Treatise on Photographic Optics I 50
Coles-Finch, W. Water, Its Origin and Use *5 00
Collins, C. D. Drafting Room Methods, Standards and Forms..... . 8 vo, 200
Collins, J. E. Useful Alloys and Memoranda for Goldsmiths, Jewelers.
Collins, S. Hoare. Plant Products and Chemical Fertilizers...... 8vo, Collis, A. G. High and Low Tension Switch-Gear Design.........8vo, 050 300
-_Switchgear. (Installation Manuals Series.) *3 50
Colver, E. D. S. High Explosives. 1250
Comstock, D. F., and Troland, L. T. The Nature of Electricity and Matter ..8vo, *2 00Coombs, H. A. Gear Teeth. (Science Series No. 120.)...........16mo,
- 75
Cooper, W. R. Primary Batteries
Copperthwaite, W. C. Tunnel Shields *6 00 *9 00
Corfield, W. H. Dwelling Houses. (Science Series No. 50.)16mo, - 75
-Water and Water-Supply. (Science Series No. 17.) - 75
Cornwall, H. B. Manual of Blow-pipe Analysis *2 50
Cowee, G. A. Practical Safety Methods and Devices. +300
Cowell, W. B. Pure Air, Ozone, and Water. ${ }^{*} 250$
Craig, J. W., and Woodward, W. P. Questions and Answers About Electrical Apparatus................................2mo, leather, I 50Craig, T. Motion of a Solid in a Fuel. (Science Series No. 49.).16m0,
_-Wave and Vortex Motion. (Science Series No. 43.)........16mo, - 75
75
Cramp, W. Continuous Current Machine Design 8vo, ${ }^{*} 250$
Creedy, F. Single Phase Commutator Motors 8vo, ${ }^{*} 200$
Crehore, A. C. Mystery of Matter and Energy. I 00
Crocker, F. B. Electric Lighting. Two Volumes. 8vo.
Vol. I. The Generating Plant300
Vol. II. Distributing Systems and Lamps
Crocker, F. B., and Arendt, M. Electric Motors ${ }^{*} 250$
Crocker, F. B., and Wheeler, S. S. The Management of Electrical Ma- chinery * $\quad 00$
Crosby, E. U., Fiske, H. A., and Forster, H. W. Handbook of Fire Protection 400
Cross, C. F., Bevan, E. J., and Sindall, R. W. Wood Pulp and Its Applica- tions. (Westminster Series.) 8vo, * 200
Crosskey, L. R. Elementary Perspective.Crosskey, L. R., and Thaw, J. Advanced Perspective 8vo,125
50Culley, J. L. Theory of Arches. (Science Series No. 87.)16mo,Cushing, H. C., Jr., and Harrison, N. Central Station Management.*2 00
Dadourian, H. M. Analytical Mechanics *3 00
Danby, A. Natural Rock Asphalts and Bitumens. ${ }^{*} 250$
Davenport, C. The Book. (Westminster Series.) * 20
Davey, N. The Gas Turbine ${ }^{*} 400$
Davies, F. H. Electric Power and Traction ${ }^{*} 200$
- Foundations and Machinery Fixing. (Installation Manual Series.)
16 mo , * 100
Deerr, N. Sugar Cane. 9 oo
Deite, C. Manual of Soapmaking. Trans. by S. T. King 4to,
De la Coux, H. The Industrial Uses of Water. Trans. by A. Morris.8vo, *5 00
Del Mar, W. A. Electric Power Conductors $8 \mathrm{vo},{ }^{*} 200$
Denny, G. A. Deep-level Mines of the Rand 4to, *io oo
- Diamond Drilling for Gold *5 00
De Roos, J. D. C. Linkages. (Science Series No. 47.)............. 6 mo ,Derr, W. L. Block Signal Operation....................... Oblong i2mo, ${ }^{*}$ I 50
- Maintenance-of-Way Engineering (In Preparation.)Desaint, A. Three Hundred Shades and How to Mix Them.....8vo,*9 $\quad \infty$
De Varona, A. Sewer Gases. (Science Series No. 55.).......... r6mo,Devey, R. G. Mill and Factory Wiring. (Installation Manuals Series.)I2mo, *i 00
Dibdin, W. J. Purification of Sewage and Water 650
Dichmann, Carl. Basic Open-Hearth Steel Process. *3 50
Dieterich, K. Analysis of Resins, Balsams, and Gum Resins....8vo, ${ }^{*} 350$Dilworth, E. C. Steel Railway Bridges............................... 4 to.
Dinger, Lieut. H. C. Care and Operation of Naval Machinery...izmo, *3 0
Dixon, D. B. Machinist's and Steam Engineer's Practical Calculator.
Dommett, W. E. Motor Car Mechanism 12mo, ${ }^{2} 00$
Dorr, B. F. The Surveyor's Guide and Pocket Table-book.
16mo, morocco, 200
Diaper, C. H. Elementary Text-book of Light, Heat and Sound . . I2mo, I 00
- Heat and the Principles of Thermo-dynamics ${ }^{2} 00$
Draper, E. G. Navigating the Ship 50
Dron, R. W. Mining Formulas.. 100
Dubbel, H. High Power Gas Engines. *5 00
Dumesny, P., and Noyer, J. Wood Products, Distillates, and Extracts. 8vo, *5 00
Duncan, W. G., and Penman, D. The Electrical Equipment of Collieries. 8vo, *5 00
Dunkley, W. G. Design of Machine Elemerts. Two volumes. .8vo,each, 200
Dunstan, A. E., and Thole, F. B. T. Textbook of Practical Chemistry.
Durham, H. W. Saws * 40 * 40
Duthie, A. L. Decorative Glass Processes. (Westminster Series.). 8 vo , *2 00
Dwight, H. B. Transmission Line Formulas. 8vo, * 200
Dyke, A. L. Dyke's Automobile and Gasoline Engine Encyclopedia.8vo, 400
Dyson, S. S. Practical Testing of Raw Materials *5 00
Dyson, S. S., and Clarkson, S. S. Chemical Woiks..............8vos, *900
Eccles, W. H. Wireless Telegraphy and Telephony. * 80
Eck, J. Light, Radiation and Illumination. Trans. by Paul Hogner, $8 \mathrm{vo},{ }^{2} 50$
Eddy, H. T. Maximum Stresses under Concentrated Loads........8vo, I 50
Eddy, L. C. Laboratory Manual of Alternating Currents........I2mo, - 50
Edelman, P. Inventions and Patents * 150
Edgcumbe, K. Industrial Electrical Measuring Instruments.8vo, 500
Edier, R. Switches and Switchgear. Trans. by Ph. Laubach... 8 v 0 * 400
Eissler, M. The Metallurgy of Gold. 900
—— The Metallurgy of Silver 400
——The Metailurgy of Argentiferous Liad 625
- A Handbook on Modern Explosives 500
Ekin, T. C. Water Pipe and Sewage Discharge Diagrams *300
Electric Light Carbons, Manufacture of.... 100
Eliot, C. W., and Storer, F. H. Compendious Manual of Qualitative Chemical Analysis. *I 25
Ellis, C. Hydrogenation of Oils 750
-Ultraviolet Light, Its Applications in Chemical Arts...... immo,(In Press)
Ellis, G. Modern Technical Drawing. 8vo, *2 00
Ennis, Wm. D. Linseed Oil and Other Seed Oils *4 00
- Applied Thermodynamics * 450
—— Flying Machines To-day * 50
- Vapors for Heat Engines * 00
Ermen, W. F. A. Materials Used in Sizing * 200
Erwin, M. The Universe and the Atom. *2 00
Evans, C. A. Macadamized RoadsEwing, A. J. Magnetic Induction in Iron . 8vo.* 400
Fairchild, J. F. Graphical Compass Conversion Chart and Tables.. - 50
Fairie, J. Notes on Lead Ores. * 50
- Notes on Pottery Clays. I 2 mo , ${ }^{*}$ oo
Fairley, W., and Andre, Geo. J. Ventilation of Coal Mines. (ScienceFairweather, W. C. Foreign and Colonial Patent Laws 8vo,
Fanning, J. T. Hydraulic and Water-supply Engineering 8vo,
Fay, I. W. The Coal-tar Dyes.*5 00
Fernbach, R. L. Glue and Gelatine 8vo,
- 75
Findlay, A. The Treasures of Coal Tar.12 mo ,*3 00
Firth, J. B. Practical Physical Chemistry* 400
Fischer, E. The Preparation of Organic Compounds. Trans. by R. V. Stanford * 50
Fish, J. C. L. Lettering of Working Drawings Oblong 8vo, I 00
Fisher, H. K. C., and Darby, W. C. Submarine Cable Testing . . . 8vo, *3 50
Fleischmann, W. The Book of the Dairy. Trans. by C. M. Aikman. 8vo, 450
Fleming, J. A. The Alternate-current Transformer. Two Volumes. 8vo. Vol. I. The Induction of Electric Currents. *6 50
Vol, II. The Utilization of Induced Currents. 650
- Propagation of Electric Currents * 300
- A Handbook for the Electrical Laboratory and Testing Room. Two Volumes *6 50
Fleury, P. Preparation and Uses of White Zinc Paints........8vo, *2 75
Flynn, P. J. Flow of Water. (Science Series No. 84.).......... I2mo, - 75
_- Hydraulic 'rables. (Science Series No. (i6.). - 75
Forgie, J. Shield Tunneling .8vo. (In Press.)
Foster, H. A. Electrical Engineers' Pocket-book. (Seventh Edition.)
I2mo, leather, 500
———Engineering Valuation of Public Utilities and Factories 8vo, *3 00
Handbook of Electrical Cost Data 8vo (In Press.)
Fowle, F. F. OverheadjTransmission Line Crossings*I 50
- The Solution of Alternating Current Problems8vo (In Press.)Fox, W. G. Transition Curves. (Science Series No. iro.).... 6 mo ,- 75
Fox, W., and Thomas, C. W. Practical Course in Mechanical Draw- ing . 12 mo , I 25
Foye, J. C. Chemical Problems. (Science Series No. 69.) I6mo, 075
-Handbook of Mineralogy. (Science Series No. 86.) - 75
Francis, J. B. Lowell Hydraulic Experiments 1500
Franzen, H. Exercises in Gas Analysis * 00
Freudemacher, P. W. Electrical Mining Installations. (Installation Manuals Series.) ${ }^{*}$ I 00
Friend, J. N. The Chemistry of Linseed Oil. 00
Frith, J. Alternating Current Design. *2 50
Fritsch, J. Manufacture of Chemical Manures. Trans. by D. Grant.
8vo, *5 0
Frye, A. I. Civil Engineers' Pocket-book I2mo, leather, ${ }^{*} 500$
Fuller, G. W. Investigations into the Purification of the Ohio River.4to, *10 00
Furnell, J. Paints, Colors, Oils, and Varnishes 8vo.
Gairdner, J. W. I. Earthwork 8vo (In Press.)
Gant, L. W. Elements of Electric Traction 8vo, *2 50
Garcia, A. J. R. V. Spanish-English Railway Terms * 450
Gardner, H. A. Paint Researches, and Their Practical Applications, 8vo, *5 00
Garforth, W. E. Rules for Recovering Coal Mines after Explosions and Fires . $2 m \mathrm{mo}$, leather, I 50
Garrard, C. C. Electric Switch and Controlling Gear. *6 00
Gaudard, J. Foundations. (Science Series No. 34.) - 75
Gear, H. B., and Williams, P. F. Electric Central Station Distribution Systems *3 50
Geerligs, H. C. P. Cane Sugar and Its Manufacture.............. 8 vo, *6 oo
- Chemical Control in Cane Sugar Factories 500
Geikie, J. Structural and Field Geology $8 \mathrm{vo},{ }^{*} 4$ oo
-. Mountains. Their Growth, Origin and Decay 8vo, *4 00
- The Antiquity of Man in Europe .8vo, *3 00
Georgi, F., and Schubert, A. Sheet Metal Working. Trans. by C. Salter 350
Gerhard, W. P. Sanitation, Watersupply and Sewage Disposal of Country Houses.. 12 mo , *2 00
_-Gas Lighting. (Science Series No. iri.) - 75
--Household Wastes. (Science Series No. 97.) - 75
——House Drainage. (Science Series No. 63.)........................mmo, - 75
- Sanitary Drainage of Buildings. (Science Series No. 93.)..I6mo, 075
Gerhardi, C. W. H. Electricity Meters 8vo, *7 20
Geschwind, L. Manufacture of Alum and Sulphates. Trans. by C. Salter. $8 \mathrm{vo}, *_{5} 00$
Gibbings, A. H. Oil Fuel Equipment for Locomotives 8vo, *2 50
Gibbs, W. E. Lighting by Acetylene * 50
Gibson, A. H. Hydraulics and Its Application $8 \mathrm{vo}, *_{5}$ oo
- Water Hammer in Hydraulic Pipe Lines ${ }^{*} 20$
Gibson, A. H., and Ritchie, E. G. Circular Arc Bow Girder 4to, *3 50
Gilbreth, F. B. Motion Study. $12 \mathrm{mo}, *_{2} 00$
- Primer of Scientific Management * 100
Gillmore, Gen. Q. A. Roads, Streets, and Pavements I 25
Godfrey, E. Tables for Structural Engineers.............i6mo, leather, * * 250
Golding, H. A. The Theta-Phi Diagram 12mo, *2 00
Goldschmidt, R. Alternating Current Commutator Motor 8vo, *3 00
Goodchild, W Precious Stones. (Westminster Series.). $8 \mathrm{vo}, *_{2} 0$
Goodell, J. M. The Location, Construction and Maintenance ofRoads........ 8 vo,I 50
Goodeve, T. M. Textbook on the Steam-engine 200
Gore, G. Electrolytic Separation of Metals *3 50
Gould, E. S. Arithmetic of the Steam-engine I 00
-Calculus. (Science Series No. i12.) - 75
- High Masonry Dams. (Science Series No. 22.) 075
Gould, E. S. Practical Hydrostatics and Hydrostatic Formulas. (Science Series No. 117.) 16mo, 075
Gratacap, L. P. A Popular Guide to Minerals *2 00
Gray, J. Electrical Influence Machines 00
_- Marine Borler Design ${ }^{*} \mathrm{I} 25$
Greenhill, G. Dynamics of Mechanical Flight *2 50
Gregorius, R. Mineral Waxes. Trans. by C. Salter * 300
Grierson, R. Some Modern Methods of Ventilation *3 00
Griffiths, A. B. A Treatise on Manures 300
__Dental Metallurgy *350
Gross, E. Hops * 500
Grossman, J. Ammonia and Its Compounds, *I 25
Groth, L. A. Welding and Cutting Metals by Gases or Electricity.(Westminster Series)*2 00
Grover, F. Modern Gas and Oil Engines. *3 00
Gruner, A. Power-loom Weaving 50
Grunsky, C. E. Topographic Stadia Surveying 200
Guildner, Hugo. Internal Combustion Engines. Trans. by H. Diederichs.
4to, *I5 00
Gunther, C. O. Integration 8vo, *I 25
Gurden, R. L. Traverse Tables ${ }^{*} 750$
Guy, A. E. Experiments on the Flexure of Beams. 8vo, * 25
Haenig, A. Emery and Emery Industry *2 50
Hainbach, R. Pottery Decoration. Trans. by C. Salter *3 50
Hale, W. J. Calculations of General Chemistry I 25
Hall, C. H. Chemistry of Paints and Paint Vehicles * 200
Hall, G. L. Elementary Theory of Alternate Current Working. . 8vo,
Hall, R. H. Governors and Governing Mechanism *2 50
Hall, W. S. Elements of the Differential and Integral Calculus. 8vo, *2 25
—— Descriptive Geometry 8 vo volume and a 4 to atlas, *3 50
Haller, G. F., and Cunningham, E. T. The Tesla Coil I2mo, *I 25
Halsey, F. A. Slide Valve Gears r 50
—— The Use of the Slide Rules. (Science Series No. Ir4.) - 75
——Worm and Spiral Gearing. (Science Series No. ir6.) 075
Hancock, H. Textbook of Mechanics and Hydrostatics I 50
Hancock, W. C. Refractory Materials. (Metallurgy Series.) (In Press.)
Hardy, E. Elementary Principles of Graphic Statics. r2mo, *I 50
Haring, H. Engineering Law.Vol. I. Law of Contract.* 4 00
Harper, J. H. Hydraulic Tables on the Flow of Water *2 00
Harris, S. M. Practical Topographical Surveying (In Press.)
Harrison, W. B. The Mechanics' Tool-book. 50
Hart, J. W. External Plumbing Work 50
\longrightarrow Hints to Plumbers on Jcint Wiping 50
—Principles of Hot Water Supply 50
- Sanitary Plumbing and Draininge 350
Haskins, C. H. The Galvanometer and Its Uses r 50
Hatt, J. A. H. The Colorist * 50
Hausbrand, E. Drying by Means of Air and Steam. Trans. by A. C.Wright . $12 m 0$,* $_{2} 50$—— Evaporating, Condensing and Cooling Apparatus. Trans. by A. C.Wright*6 00
Hausmann, E. Telegraph Engineering. * 3 oo
Hausner, A. Manufacture of Preserved Foods and Sweetmeats. Trans. by A. Morris and H. Robson *3 50
Hawkesworth, J. Graphical Handbook for Reinforced Concrete Design. 4to, $*_{2} 50$
Hay, A. Continuous Current Engineering. 250
Hayes, H. V. Public Utilities, Their Cost New and Depreciation...8vo, $*_{2}$ oo
- Public Utilities, Their Fair Present Value and Return......8vo, 200
Heath, F. H. Chemistry of Photography. 8vo. (In Press.)
Heather, H. J. S. Electrical Engineering 8vo, *3 50
Heaviside, O. Electromagnetic Theory. Vols. I and II....8vo, each, *6 oo
Vol. III. 8vo, *io oo
Heck, R. C. H. The Steam Engine and Turbine. $.8 \mathrm{vo},{ }^{*} 350$
——Steam-Engine and Other Steam Motors. Two Volumes.
Vol. I. Thermodynamics and the Wiechanics. $8 \mathrm{vo}, *_{3} 50$
Vol. II. Form, Construction, and Working. $8 \mathrm{vo},{ }^{*} 500$
- Notes on Elementary Kinematics. 8 vo , boards, *I 00
-- Graphics of Machine Forces 8 vo , boards, * $_{\text {I }}$ oo
Heermann, P. Dyers' Materials. Trans. by .A C. Wright.i2mo, ${ }^{2} 50$
Hellot, Macquer and D'Apligny. Art of Dyeing Wool, Silk and Cotton. 8vo, $*_{2}$ oo
Henrici, ©. Skeleton Structures. $8 \mathrm{vo}, \quad 150$
Hering, C., and Getman, F. H. Standard Tables of Electro-Chemical Equivalents *2 00
Hering, D. W. Essentials of Physics for College Students....... . 8vo, *r 75
Hering-Shaw, A. Domestic Sanitation and Plumbing. Two Vols...8vo, $*_{5} 00$
Hering-Shaw, A. Elementary Scienc 3 $8 \mathrm{vo}, *_{2} 00$
Herington, C. F. Powdered Coal as Fuel 300
Herrmann, G. The Graphical Statics of Mechanism. Trans. by A. P. Smith.............. 12 mo , 200
Herzfeld, J. Testing of Yarns and Textile Fabrics 8vo.Hildebrandt, A. Airships, Past and Present8vo,
Hiidenbrand, B. W. Cable-Makıng. (Science Series No. 32)....i6mo, - 75
Hilditch, T. P. A Concise History of Chemistry * 50
Hill, J. W. The Purification of Public Water Supplies. New Edition.
- Interpretation of Water Analysis (In Press.)
Hill, M. J. M. The Theory of Proportion. $8 \mathrm{vo}, *_{2} 50$
Hillhouse, P. A. Ship Stability and Trim 450
Hiroi, I. Plate Girder Construction. (Science Series No. 95.)...r6me, - 75
——Statically-Indeterminate Stresses. *2 00
HirshfelC, C. F. Engineering Thermodynamics. (Science Series No. 45.)16mo, 075
Hoar, A. The Submarine Torpedo Boat............................... mo, *2 ${ }_{2}$
Hobart, H. M. Heavy Electrical Engineering. $8 \mathrm{vo},{ }_{4} 50$
- Design of Static Transformers * 200
- Electricity 8vo,
-_Electric Trains 8vo, * 250
——Electric Propulsion of Shins *2 50
Holjart, J. F. Hard Soldering, Soft Soldering and Brazing.......i2mo, * $\quad 00$
Hobbs, W. R. P. The Arithmetic of Electrical Measurements. - 75
Hoff, J. N. Paint and Varnish Facts and Formulas. r 50
Hele, W. The Distribution of Gas * 50
Holley, A. L. Railway Practice. 6 oo
Hopkins, N. M. Model Engines and Small Boats 125
Hopkinson, J., Shoolbred, J. N., and Day, R. E. Dynamic Electricity. (Science Series No. 7r.) - 75
Horner, J. Practical Ironfounding. 8vo, *2 oo
——Gear Cutting, in Theory and Practice. 8vo, *3 00
Horniman, Roy. How to Make the Railways Pay For the War....8vo, 3 ou
Houghton, C. E. The Elements of Mechanics of Materials.......immo, *2 00
Houstoun, R. A. Studies in Light Production. 200
Hovenden, F. Practical Mathematics for Young Engineers.......izmo, * 50
Howe, G. Mathematics for the Practical Man. * 25
Howorth, J. Repairing and Riveting Glass, China and Earthenware. 8vo, paper, * 50
Hoyt, W. E. Chemistry by Experimentation * 70
Hubbard, E. The Utilization of Wood-waste. 8vo, 250
Hübner, J. Bleaching and Dyeing of Vegetable and Fibrous Materials. (Outlines of Industrial Chemistry.) * 5 oo
Hudson, O. F. Iron and Steel. (Outlines of Industrial Chemistry.). 8 vo , $*_{2}$ oo
Humphrey, J. C. W. Metallography of Strain. (Metallurgy Series.)(In Press.)
Humphreys, A. C. The Business Features of Engineering Practice..8vo. * 25
Hunter, A. Bridge Work. .8vo. (In Press.)
Hurst, G. H. Handbook of the Theory of Cclor. 8vo, *3 50
——Dictionary of Chemicals and Raw Products__Lubricating Oils, Fats and Greases.8ro, *5 oo
-Soaps 8vo, * 6
Hurst, G. H., and Simmons, W. H. Textile Soaps and Oils 350
Hurst, H. E., and Lattey, R. T. Text-book of Physics. 8vo, *3 oo
- Also published in three parts.
Part I. Dynamics and Heat. *I 25
Part II. Sound and Light *I 25
Part III. Magnetism and Electricity *I 50
Hutchinson, R. W., Jr. Long Distance Electric Power Transmission. 12 mo , * 3 ooHutchinson, R. W., Jr., and Thomas, W. A. Electricity in Mining. 12me,(In Press.)Hutchinson, W. B. Patents and How to Make Money Out of Them.
I2mo, I oo
Hutton, W. S. The Works' Manager's Handbook................... 8vo, 600
Hyde, E. W. Skew Arches. (Science Series No. 15.).........r6mo - 75
Hyde, F. S. Solvents, Oils, Gums, Waxes .8vo,
Induction Coils. (Science Series No. 53.)............................ 6 mo , - 75
Ingham, A. E. Gearing. A practical treatise. 250
Ingle, H. Manual of Agricultural Chemistry. 8vo (In Press.)
Inness, C. H. Problems in Machine Design $12 \mathrm{mo},{ }^{*} 3$ oо
- Air Compressors and Blowing Engines I2mo,
——Centrifugal Pumps 12mo, *3 oo
- The Fan . 12 mo * 4 oo
Jacob, A., and Gould, E. S. On the Designing and Construction of Storage Reservoirs. (Science Series No. 6.).............. 6 mm , - 75
Jannettaz, E. Guide to the Determination of Rocks. Trans. by G. W. Plympton. I 50
Jehl, F. Manufacture of Carbons 8vo, * 400
Jennings, A. S. Commercial Paints and Painting. (Westminster Series.)
8vo, 400
Jennison, F. H. The Manufacture of Lake Pigments. .8vo (In P'ress.)
Jepson, G. Cams and the Principles of their Construction 8vo, I 50
- Mechanical Drawing 8vo (In Preparation.)
Jervis-Smith, F. J. Dynamometers 8vo,
Jockin, W. Arithmetic of the Gold and Silversmith I2mo, *I 00
Johnson, J. H. Arc Lamps and Accessory Apparatus. (Installation Manuals Series.) I2mo, * 75
Johnson, T. M. Ship Wiring and Fitting. (Installation Manuals Series.) 12 mo, * 75
Johnson, W. McA. The Metallurgy of Nickel. (In Preparation.) Johnston, J. F. W., and Cameron, C. Elements of Agriculturai Chemistry and Geology . 12 mo , 260
Joly, J. Radioactivity and Geology. 300
Jones, H. C. Electrical Nature of Matter and Radioactivity inmo, 200
-Nature of Solution * 50
-_ New Era in Chemistry * 20
Jones, J. H. Tinplate Industry *3 о
Jones, M. W. Testing Raw Materials Used in Paint. 250
Jordan, L. C. Practical Railway Spiral I 50
Joynson, F. H. Designing and Construction of Machine Gearing . .8vo, 200
Jüptner, H. F. V. Siderclogy: The Science of Iron 8vo, *5 oo
Kapp, G. Alternate Curr ?nt Machinery. (Science Series No. 96.) 16mo, 075
Kapper, F. Overhead Transmission Lines * 400
Keim, A. W. Prevention of Dampness in Buildings. 8vo,
KeHer, S. S. Mathematics for Engineering Students. I2mo, half leather. - and Knox, W. E. Analytical Geometry and Calculus.
8vo, *2 50
8vo, *2 50
Kelsey, W. R. Continuous-current Dysamos and Motors.
Kelsey, W. R. Continuous-current Dysamos and Motors.
Kemble, W. T., and Underhill, C. R. The Periodic Law and the Hydrogen Spectrum...................................... 8 vo, paper, * 50
Kemp, J. F. Handbook of Rocks 8vo, *i 50
Kennedy, A. B. W., and Thurston, R. H. Kinematics of Machinery. (Science Series No. 54.) - 75
Kennedy, A. B. W., Unwin, W. C., and Idell, F. E. Compressed Air. (Science Series No, 175) - 75
Kennedy, R. Electrical Installations. Five Volumes. .4to, 1500
Single Volumes each, 350
Flying Machines; Practice and Design 12mo, *2 50
- Principles of Aeroplane Construction ${ }^{*}{ }^{\infty}$
Kennelly, A. E. Electro-dynamic Machinery 50
Kent, W. Strenth of Materials. (Science Series No. 4I.)...... 16 mo , - 75
Kershaw, J. B. C. Fuel, Water and Gas Analysis 8vo,
- Electrometallurgy. (Westminster Series.) 8vo, 200
- The Electric Furnace in Iron and Steel Production I2mo,
- Electro-Thermal Methods of Mron and Steel Production....8vo,
Kinzbrunner, C. Alternate Current Windings 8vo,- Continuous Current Armatures8 vo, *I $_{50}$
Testing of Alternating Current Machines 8vo,
Kinzer, H., and Walter, K. Theory and Practice of Damask Weaving,8vo,
Kirkaldy, A.. W., and Evans, A. D. History and Economics ofTransport
Kirkaldy, W. G. David Kirkaldy's System of Mechanical Testing . . 4to,
Kirkbride, J. Engraving for Illustration 8vo,
Kirkwood, J. P. Filtration of River Waters 4to,Kirschke, A. Gas and Oil Engines.2m0,Klein, J. F Design of a High-speed Steam-engine$8 \mathrm{vo},{ }^{*} 500$
-- Physical Significance of Entropy $8 \mathrm{vo},{ }^{*} \mathrm{I} 50$
Klingenberg, G. Large Electric Power Stations *5 00
Knight, R.-Adm. A. M. Modern Seamanship. 8vo, * 650
- Pocket Edition 300
Knott, C. G., and Mackay, J. S. Practical Mathematics 250
Knox, G. D. Spirit of the Soil.
Knox, J. Physico-Chemical Calculations. * 25
-Fixation of Atmospheric Nitrogen. (Chemical Monographs.).irmo, ${ }^{*}$ I 0
Koester, F. Steam-Electric Power Plants 4to,
4to,- Hydroelectric Developments and Engineering
Koller, T. The Utilization of Waste Prcducts. 8vo,
-Cosmetics
Koppe, S. W. Glycerine. ${ }^{2} 50$* 5 oo${ }^{*} 500$
Kozmin, P. A. Flour Milling. Trans. by M. Falkner.
Kremann, R. Application of the Physico-Chemical Theory to Tech-nical Processes and Manufacturing Methods. Trans. by H.8vo, *3 00
Kretchmar, K. Yarn and Warp Sizing 8 vo,
*5 00
Laffargue, A. Attack in Trench Warfare. 16 mo , - 50
Lallier, E. V. Elementary Manual of the Steam Engine. 12 mo ,
Lambert, T. Lead and Its Compounds.$8 \mathrm{vo}, *_{3} 50$
- Bone Products and Manures. 8vo, ${ }^{3} 50$
Lamborn, L. L. Cottonseed Products. $8 \mathrm{vo},{ }^{*} 300$
- Modern Soaps, Candles, and Glycerin $8 \mathrm{vo},{ }^{*} 750$
*750
Lamprecht, R. Recovery Wo k After Pit Fires. Trans. by C. Salter,
8vo,
8vo,
Lancaster, M. Electric Cooking, Heating and Cleaning 8vo,
*5 00
*5 00
Lanchester, F. W. Aerial Flight. Two Volumes. 8vo.${ }^{5} 500$$* 50$
750
${ }^{*} 200$Vol. I. Aerodynamics.*6 00
Vol. II. Aerodonetics *6 $о$
Lanchester, F. W. The Flying Machine.............................. . 8vo, *3 00
-Industrial Engineering: Present and Post-War Outlook...i2mo, 00
Lange, K. R. By-Products of Coal-Gas Manufacture 12 mo , 250
Larner, E. T. Principles of Alternating Currents. 25
La Rue, E. F. Swing Bridges. (Science Series No. ro7.).......16m0, - 75
Lassar-Cohn. Dr. Modern Scientific Chemistry. Trans. by M. M. Pattison Muir. 12 mo , *2 0
Latimer, L. H., Field, C. J., and Howell, J. W. Incandescent Electric Lighting. (Science Series No. 57.)........................16mo, 075
Latta, M. N. Handbook of American Gas-Engineering Practice . . .8vo, * 450
- American Producer Gas Practice 4to, *6 00
Laws, B. C. Stability and Equilibrium of Floating Bodies....... 8vo, *3 50
Lawson, W. R. British Railways. A Financial and Commercial Survey. 200
Leask, A. R. Breakdowns at Sea 200
—— Refrigerating Machinery 200
Lecky, S. T. S. "Wrinkles" in Practical Navigation. 0 oo
- Pocket Edition 500
-Danger Angle 50
Le Doux, M. Ice-Making Machines. (Science Series No. 46.). 16mo, - 75
Leeds, C. C. Mechanical Drawing for Trade Schools.......oblong 4to, *2 oo
- Mechanical Drawing for High and Vocational Schools.......4to,Lefévre, L. Architectuial Pottery. Trans. by H. K. Bird and W. M.Binns4to, *7 0
Lehine:̈, S. Ink Manufacture. Trans. by A. Morris and H. Robson.8vo, ${ }_{2} 50$
Lemstrom, S. Electricity in Agriculture and Horticulture.......8vo, * 150
Letts, E. A. Fundamental Problems in Chemistry * 20
Le Van, W. B. Steam-Engine Indicator. (Science Series No. 78).16mo, - 75
Lewes, V. B. Liquid and Gaseous Fuels. (Westminster Series.). . 8vo, ${ }^{2} 00$
-Carbonization of Coal *5 00
Lewis, L. P. Railway Signal Engineering *3 50
Lewis Automatic Machine Rifle; Operation of. * 60
Licks, H. E. Recreations in Mathematics. ${ }^{1} 25$
Lieber, B. F. Lieber's Five Letter American Telegraphic Code .8vo, *I5 00
-—Spanish Edition $8 \mathrm{vo},{ }^{1} 500$
- - French Edition 8 vo , *15 00
- Terminal Index. 8vo, *2 50
- Lieber's Appendix folio, *15 00
_ Handy Tables 4to, *2 50
——Bankers and Stockbrokers' Code and Merchants and Shippers' Blank Tables $8 \mathrm{vo},{ }^{*} \mathrm{I} 500$
- 100,000,000 Combination Code $8 \mathrm{vo},{ }^{*}$ io 00
Engineering Code $8 \mathrm{vo},{ }^{*}{ }^{1} 250$
Livermore, V. P., and Williams, J. How to Become a Competent Motor-
Livingstone, R. Design and Construction of Commutators......8vo, *3 00_-Mechanical Design and Construction of Generators..............8vo,
350
Lloyd, S. L. Fertilizer Materials. 00

Lobben, P. Machinists' and Draftsmen's Handbook 50| Lockwood, T. D. Electricity, Magnetism, and Electro-telegraph8vo, | 2 |
| :--- | :--- |

12mo, o 75
Lodge, O. J. Elementary Mechanics I 2 mo , I 5^{0}
——Signalling Across Space without Wires 8vo,
Loewenstein, L. C., and Crissey, C. P. Centrifugal Pumps ${ }^{*} 450$
Lomax, J. W. Cotton Spinning I2mo, I 50
Lord, R. T. Decorative and Fancy Fabrics. svo, *3 50
Loring, A. E. A Handbook of the Electromagnetic Telegraph (Science Series No. 39.) I6mo, 075
Low, D. A. Applied Mechanics (Elementary) I6mo, o 80
Lubschez, B. J. Perspective I 50
Lucke, C. E. Gas Engine Design *3 on
_— Power Plants: Design, Efficiency, and Power Costs. 2 vols.
(In Preparation.)
Luckiesh, M. Color and Its Application 8vo,
__Light and Shade and Their Applications 8vo, *2 50
Lunge, G. Coal-tar and Ammonia. Three Volumes. 8 v 0, 2500
_ Technical Gas Analysis 8vo
—— Manufacture of Sulphuric Acid and Alkali. Four Volumes 8vo,
Vol. I. Sulphuric Acid. In three parts *18 00
_-Vol. I. Supplement 500
Vol. II. Salt Cake, Hydrochloric Acid and Leblanc Soda. In two par:s In Press.)
(In Press.) Vol. III Ammonia Soda
(In Press.) Vol. IV Electrolytic Methods
_Technical Chemists' Handbook. Temo, leather, ${ }^{*} 4$ ०० in collaboration with the corps of specialists.
Vol. I. In two parts 880, *i5 00
Vol. II. In two parts 8vo, *18 00
Vol. III. In two parts 8vo, *i8 oo
The set (3 vols.) complete *50 00
Luquer, L. M. Minerals in Rock Sections 8vo, * 50
MacBride, J. D. A Handbook of Practical Shipbuilding, I2mo, fabrikoid, 2 оо
Macewen, H. A. Food Inspection 8vo, *2 50
Mackenzie, N. F. Notes on Irrigation Works 8vo, *2 50
Mackie, J. How to Make a Woolen Mill Pay 8vo, *2 00
Maguire, Wm. R. Domestic Sanitary Drainage and Plumbing . . . 8vo, 400
Malcolm, H. W. Submarine Telegraph Cable 850
Mallet, A. Compound Engines. Trans. by R. R. Buel. (Science SeriesNo. ıо.) . r6mo,Mansfield, A. N. Electro-magnets. (Science Series No. 64.).. I6mo, o 75
Marks, E. C. R. Construction of Cranes and Lifting Machinery. 12 mn , *2 75
——Construction and Working of Pumps . 12 mo ,

- Manufacture of Iron and Steel Tubes *2 0
-. Mechanical Engineering Materials. 12 mo,
12 mo,
*

50
Marks, G. C. Hydraulic Power Engineering. 8vo, 450
—— Inventions, Patents and Designs 12 mo , * 00
Marlow, T. G. Drying Machinery and Practice 8vo, *5 00
Marsh, C. F. Concise Treatise on Reinforced Concrete 8vo, *2 50
——Reinforced Concrete Compression Member Diagram. Mounted on Cloth Boards * 1.50
Marsh, C. F., and Dunn, W. Manual of Reinforced Concrete and Con- crete Block Construction. ifmo, fabrikoid (In Fress.)Marshall, W. J., and Sankey, H. R. Gas Engines. (Westminster Series.)
Martin, G. Triumphs and Wonders of Modern Chemistry......8vo, *3 0

- Modern Chemistry and Its Wonders.
300Martin, N. Properties and Design of Reinforced Concrete I2mo,
Martin, W. D. Hints to Engineers. * 50*2 50
Massie, W. W., and Underhill, C. R. Wireless Telegraphy and Telephony
Mathot, R. E. Internal Combustion Engines........................... 8 vo , * $_{4}$ oo
Maurice, W. Electric Blascing Apparatus and Explosives. 8vo, *3 50
- Shot Firer's Guide $8 \mathrm{vo},{ }^{*} \mathrm{I} 50$
Maxwell, F. Sulphitation in White Sugar ranufacture 375
Maxwell, J. C. Matter and Motion. (Science Series No. 36.). 16 mo , - 75
Maxwell, W. H., and Brown, J. T. Encyclopedia of Municipal and Sani- tary Engineering 4to, ${ }^{*}$ io 00
Mayer, A. M. Lecture Notes on Physics 8vo, 200
Mayer, C., and Slippy, J. C. Telephone Line Construction. 8vo, *3 oo
McCullough, E. Practical Surveying 12mo, *2 oo
——Engineering Work in Cities and Towns. $8 \mathrm{vo}, *_{3} 00$
——_Reinforced Concrete 12mo, *1 50
McCullough, R. S. Mechanical Theory of Heat 8vo, 350
McGibbon, W. C. Indicator Diagrams for Marine Engineers 8vo, \%3 50
_-Marine Engineers' Drawing Book *2 50
McGibbon, W. C. Marine Engineers Pocketbook. ${ }^{*} 450$
McIntosh, J. G. Technology of Sugar *6 00
_-Industrial Alcohol 8vo, *3 50
- Manufacture of Varnishes and Kindred Industries. Three Volumes. 8vo.
Vol. I. Oil Crushing, Refining and Boiling. Vol. II. Varnish Materials and Oil Varnish Making *5 00
Vol.. III. Spirit Varnishes and Materials. *б оо
MiKay, C. W. Fundamental Principles of the Telephone Business.
8vo. (In Press.)
McKillop, M., and McKillop, A. D. Efficiency Methods...........izmo, 150
MaKnight, J. D., and Brown, A. W. Marine Multitubular Boilers. * 2 5
McMaster, J. B. Bridge and Tunnel Centres. (Science Series No. 20.)
McMechen, F. L. Tests for Ores, Minerals and Metals - 75 - 75 100
McPherson, J. A. Water-works Distribution 2 EC
"ronde, A. Modern Gas Works Practice * 5)
Melick, C. W. Dairy Laboratory Guide. * 25
"Mentor." Self-Instruction for Students in Gas Supply. i2mo.
Flementary 250
Advanced 250
Me:ck, E. Chemical Reagents; Their Purity and Tests. Trans. by
H. E. Schenck. 8vo, I 00
Merivaie, J. H. Notes and Formulae for Mining Students......ramo,
Merritt, Wm. H. Field Testing for Gold and Silver....16mo, leather, 200
Mertens. Tactics and Technique of River Crossings. Translated by W. Kruger. 250
Mierzinski, S. Waterproofing of Fabrics. Trans. by A. Morris and H. Robson \&vo, *2 50Miessner, B. F. Radio Dynamics.. $12 m 0$,Miller, G. A. Determinants. (Dcience Series No 105.)....... 6 mo
Miller, W. J. Introduction to Historical Geology...................izmo,Milroy, M. E. W. Home Lace-making . 2 mo ,Mills, C. N. Elernentary Mechanics for Engineers....................8vo,Mitchell, C. A. Mineral and Aerated Waters. 8vo,
Mitchell, C. A., and Prideaux, R. M. Fibres Used in Textile and AlliedIndustries 8 vo ,Mitchell, C. F., and G. A. Building Construction and Drawing. 12mo.Elementary CourseI 50
Advanced Course. * 25
Moncikton, C. C. F. Radiotelegraphy. (Westminster Series.)..... 8vo, *2 00
Monteverde, R. D. Vest Pocket Glossary of English-Spanish, Spanish- English Technical Terms. 64mo, leather,

*I 00
Montgomery, J. H. Electric Wiring Specifications. 16 mo ,

* 100
Moore, E. C. S New Tables for the Complete Solution of Ganguillet andKitter's Formula .. 8 . vo ,Moore, Harold. Liquid Fuel for Internal Combustion Engines... 8 vo ,Morecroft, J. H., and Hehre, F. W. Short Course in Electrical Testing.8 vc ,Morgan, A. P. Wireless Telegraph Apparatus for AmateursI2mo,*6 00500
Moses, A. J. The Characters of Crystals . 8 vo ,——and Parsons, C. L. E'ements of Mineralogy.................8vo,Moss, S. A. Elements of Gas Engine Design. (Science Series No.121.) .. . 5 mo,
-.- The Lay-out of Corliss Valve Gears. (Science Series No. 119.)16 mo ,Mulford, A. C. Boundaries and Landmarks 12 mo ,Mullin, J. P. Modern Moulding and Pattern-making 12 mo ,Munby, A. E. Chemistry and Physics of Building Materials. (West-minster Series.) . 8 vo ,
Murphy, I. G. Practical Mining 16 mo ,Murray, J. A. Soils and Manures. (Westminster Series.) 8vo,
Nasmith, J. The Student's Cotton Spinning. 8vo,
- Recent Cotton Mill Construction I2mo,
Neave, G. B., and Heilbron, I. M. Identification of Organic Compounds. 12 mo ,Neilson, R. M. Aeroplane Patents. 8vo,Nerz, F. Searchlights. Trans. by C. Rodgers 8vo,
Neuberger, H., and Noalhat, H. Technology of Petroleum. Trans. byJ. G. McIntosh . 8vo,*io 00
Newall, J. W. Drawing, Sizing and Cutting Bevel-gears 8vo, I 50
Newbigin, M. I., and Flett, J. S. James Geikie, the Man and the Geologist 350
Newbeging, T. Handbook for Gas Engineers and Managers...... 8 vo, *6 50
Newell, F. I.., and Drayer, C. E. Engineering as a Career. .irmo, cloth, I 00
Nicol, G. Ship Construction and Calculations.I2mo,I 00
D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG 2 I
Nisbet, H. Grammar of Textile Design 75°
Nolan, H. The Telescope. (Science Series No. 5r.)..............16mo, - 75
Norie, J. W. Epitome of Navigation (2 Vols.) 1500
-A Complete Set of Nautical Tables with Explanations of Their Use 650
North, H. B. Laboratory Experiments in General Chemistry I2mo, oo
O'Connor, H. The Gas Engineer's Pocketbook 12 mo , leather, 350
Ohm, G. S., and Lockwood, T. D. Galvanic Circu:t Translated by William Francis (Science Series No. Io2.)..............15mo, 75
Olsen, J. C. Text-book of Quantitative Chemi al Analysis......8vo, 350
Olsson, A. Motor Control, in Turret Turning and Gun Elevating. (U.S. Navy Electrical Series, No. r.) 12 mo, paper, * 050
Ormsby, M. T. M. Surveying 00
Oudin, M. A. Standard Polyphase Apparatus and Systems. 8vo,
Cwen, D. Recent Physical Research 8vo,
Pakes, W. C. C., and Nankivell, A. T. The Science of Hygiene . .8vo, * 75
Palaz, A. Industrial Photometry. Trans. by G. W. Patterson, Jr. . 8vo, * 400
Palmer, A. R. Electrical Experiments. 12mo, 075
——Magnetic Measurements and Experiments. - 75
Pamely, C. Colliery Manager's Handbook. 8vo, *io 00
Parker, P. A. M. The Control of Water. $.8 \mathrm{vo}, *_{5}$ oo
Parr, G. D. A. Electrical Engineering Measuring Instruments....8vo, *3 50
Parry, E. J. Chemistry of Essential Oils and Artificial Perfumes.
Foods and Drugs. Two Volumes.
Wol. I. Monograghs on Essential Oils. *9 00
Vol. II. Constituents of Essential Oils, Analysis - and Coste, J. H. Chemistry of Pigments. 8vo, *5 00
Parry, L. Notes on Alloys 8vo,——Metalliferous Wastes8vo, $*_{2} 50$
- Analysis of Ashes and Alloys. 8vo, * 250
Parry, L. A. Risk and Dangers of Various Occupations 8vo, *3 50
Parshall, H. F., and Hobart, H. M. Armature Windings. $4^{\text {to, }}$ 750
- Electric Railway Engineering. * 50
Parsons, J. L. Land Drainage. 8 vo , I^{50}
Parsons, S. J Malleable Cast Iron. ${ }^{*} 250$
Partington, J. R. Higher Mathematics for Chemical Students..I2mo, ${ }^{*} 200$
——Textbook of Thermodynamics. * 400
—— The Alkali Industry 300
Passmore, A. C. Technical Terms Used in Architecture........8vo, * 350
Patchell, W. H. Electric Power in Mines $8 \mathrm{vo},{ }^{*} 4$ oo
Paterson, G. W. L. Wiring Calculations. * 20
- Electric Mine Signalling Installations. I 50
Patterson, D. The Color Printing of Carpet Yarns. 50
- Color Matching on Textiles. 50
-- Textile Color Mixing 50
Paulding, C. P. Condensation of Steam in Covered and Bare Pipes 8vo, * 200
- Transmission of Heat through Cold-storage Insulation.........I2mo, *r oo
Payne, D. W. Iron Founders' Handbook. * 400
Peddie, R. A. Engineering and Metallurgical Books. I 50
Peirce, B. System of Analytic Mechanics. Io 00
- Linnear Associative Algebra 3 оо
Pendred, V The Railway Locomotive. (Westminster Series.).....8vo, *2 oo
Perkin, F. M. Practical Methods of Inorganic Chemistry.
Perrin J. Atoms.
——and Jaggers, E. M. Elementary Chemistry.8vo,*2 50
Perrine, F. A. C. Conductors for Electrical Distribution. 8vo,
Petit, G. White Lead and Zinc White Paints. 8vo,
Petit, R. How to Build an Aeroplane. Trans. by T. O'B. Hubbard, and
J. H. Ledeboer8 vo,
Pettit, Lieut, J. S. Graphic Precesses. (Science Series No. 76.). 16mo,
Philbrick, P. H. Beams and Girders. (Science Series No. 88.)... I6mo,Phillips, J. Gold Assaying.8vo,
—— Dangerous Goods. 350*3 75Phin, J. Seven Follies of Science
*I 50Pickworth, C. N. The Indicator Handbook. Two Volumes. . I2mo, each,
- Logarithms for Beginners.
_- The Slide Rule 50I 50
Pilcher, R. B., and Butler-Jones, F. What Industry Owes to Chemical I 50
Science.150
Plattner's Manual of Blow-pipe Analysis. Eighth Edition, revised. Trans.by H. B. Cornwall.8vo,${ }^{*} 400$
Plympton, G. W. The Aneroid Barometer. (Science Series No. 35.)
16 mo ,
- 75
- 75
——How to Become an Engineer. (Science Series No. 100.)...16m0, - 75
Van Nostrand's Table Book. (Science Series No. 104.).... i6m0, 075
Pochet, M. L. Steam Injectors. Translated from the French. (Science Series No. 29.) - 75
Pocket Logarithms to Four Places. (Science Series No. 65.)...I6mo., 75
leather, I 00
Polleyn, F. Dressings and Finishings for Textile Fabrics. 350
Pope, F. G. Organic Chemistry. 50
Pope, F. L. Modern Practice of the Electric Telegraph.............. . 8vo, I 50
Popplewell, W. C. Prevention of Smoke. 350
- Strength of Materials 50
Porritt, B. D. The Chemistry of Rubber. (Chemical Monographs, Ne. 3.) * 100
Porter, J. R. Helicopter Flying Machine. I 50
Potts, H. E. Chemistry of the Rubber Industry. (Outlines of Indus- trial Chemistry) 8vo, * 250
Practical Compounding of Oils, Tallows and Grease
Pratt, K. Boiler Draught.* 25
——High Speed Steam Engines. ${ }^{*} 200$
Pray, T., Jr. Twenty Years with the Indicator 250
- Steam Tables and Engine Constant. 200
Prelini, C. Earth and Rock Excavation *3 00
- Graphical Determination of Earth Slopes. *2 00
-- Tunneling. New Edition *3 00
——Dredging. A Practical Treatise ${ }^{*} 300$
Prescott, A. B. Organic Analysis. 500
Prescott, A. B., and Johnson, O. C. Qualitative Chemical Analysis. . 8vo, *350
Prescott, A. B., and Sullivan, E. C. First Book in Qualitative Chemistry.
12 mo , * 50
Prideaux, E. B. R. Problems in Physical Chemistry. ${ }^{*} 200$
-The Theory and Use of Indicators 500
Primrose, G. S. C. Zinc. (Metallurgy Series.)............. (In Press.)
Prince, G. T. Flow of Water. *2 0
Prost, E. Mianual of Chemical Analysis 500
Pull, E. Modern Steam Boilers. 500
Pullen, W. W. F. Application of Graphic Methods to the Design of *2 50
-Injectors: Theory, Construction and Working. *2 00
- Indicator Diagrams 250
- Engine Testing 550
Putsch, A. Gas and Coal-dust Firing. 250
Pynchon, T. R. Introduction to Chemical Phvsics. 300
Rafter, G. W. Mechanics of Ventilation. (Science Series No. 33.). 16m0, - 75
-_Potable Water. (Science Series No. ro3.)..................16mo, - 75
——Treatment of Septic Sewage. (Science Series No. ir8.)..16mo, $\circ 75$
Rafter, G. W., and Baker, M. N. Sewage Disposal in the United States.
4to, *6 00
Raikes, H. P. Sewage Disposal Works * 400
Randau, P. Enamels and Enamelling. *5 00
Rankine, W. J. M. Applied Mechanics. 500
——Civil Engineering 650
- Machinery and Millwork 500
- The Steam-engine and Other Prime Movers. 500
Rankine, W. J. M., and Bamber, E. F. A Mechanical Text-book. . . .8vo, 350
Ransome, W. R. Freshman Mathematics. * 35
Raphael, F. C. Localization of Faults in Electric Light and Power Mains.
350
350
Rasch, E. Electric Arc Phenomena. Trans. by K. Tornberg. 8vo, *2 00
Rathbone, R. L. B. Simple Jewellery * 200
Rateau, A. Flow of Steam through Nozzles and Orifices. Trans. by H.
B. Brydon * 50
Rausenberger, F. The Theory of the Recoil Guns. *5 00
Rautenstrauch, W. Notes on the Elements of Machine Design. 8vo, boards, * 150
Rautenstrauch, W., and Williams, J. T. Machine Drafting and Empirical Design.
Part I. Machine Drafting 8vo,
Part II. Empirical Design (In Preparation.)
Raymond, E. B. Alternating Current Engineering ${ }^{*} 250$
Rayner, H. Silk Throwing and Waste Silk Spinning 8vo,
Recipes for the Color, Paint, Varnish, Oil, Soap and Drysaltery Trades,
svo,
svo,
Recipes for Flint Glass Making. *5 00 *5 00
Redfern, J. B., and Savin, J. Bells, Telephones (Installation Manuals Series.). * 05°
Redgrove, H. S. Experimental Mensuration * 25
Redwood, B. Petroleum. (Science Series No. 92.) - 75
Reed, S. Turbines Applied to Marine Propulsion. * 500
Reed's Engineers' Handbook. *9 00
- Key to the Nineteenth Edition of Reed's Engineers' Handbook. . 8vo, 400
——Useful Hints to Sea-going Engineers. 300
Reid, E. E. Introduction to Research in Organic Chemistry. (In Press.)Reinhardt, C. W. Lettering for Draftsmen, Engineers, and Students.
Reinhardt, C. W. The Technic of Mechanical Drafting,
oblong, 4to, boards,Reiser, F. Hardening and Tempering of Steel. Trans. by A. Morris andH. Robson ...*2 50
Reiser, N. Faults in the Manufacture of Woolen Goods. Trans. by A. Morris and H. Robson. 8vo, ${ }^{*} 20$
-Spinning and Weaving Calculations * 500
Renwick, W. G. Marble and Marble Working 500
Reuleaux, F. The Constructor. Trans. by H. H. Suplee..........4to, * 400Rey, Jean. The Range of Electric Searchlight Projectors.........8vo,.Reynolds, O., and Idell, F. E. Triple Expansion Engines. (ScienceSeries No. 99.).. 6 mo,
Rhead, G. F. Simple Structural Woodwork. * 25- 75
Rhead, G. W. British Pottery Marks. 350
Rkodes, H. J. Art of Lithography. 500
Rice, J. M., and Johnson, W. W. A New Method of Obtaining the Differ- ential of Functions.. . . 12 mo , - 50
Richards, W. A. Forging of Iron and Steel. 50
Richards, W. A., and North, H. B. Manual of Cement Testing. . . . I2mo, * 50
Richardson, J. The Modern Steam Engine *3 50
Richardson, S. S. Magnetism and Electricity. *2 00
Rideal, S. Glue and Glue Testing. *500
Riesenberg, F. The Men on Deck. 300
- Standard Seamanship for the Merchant Marine.irmo (In Press.)
Rimmer, E. J. Boiler Explosions, Collapses and Mishaps........... . 8vo, *I 75
Rings, F. Reinforced Concrete in Theory and Practice............rmo, ${ }^{*} 45$
-_Reinforced Concrete Bridges *5 00
Ripper, W Course of Instruction in Machine Drawing *6 оо
Roberts, F. C. Figure of the Earth. (Science Ser:es No. 79.) .. s6mo, - 75
Roberts, J., Jr. Laboratory Work in Electrical Engineering........ . 8vo, * 20
Robertson, L. S. Water-tube Boilers 200
Robinson, J. B. Architectural Composition. $8 \mathrm{vo}, *_{2} 50$
Robinson, S. W. Practical Treatise on the Teeth of Wheels. (Science Series No. 24.).. . . 6 mmo
——Railroad Economics. (Science Scries No. 59.)................i6mn, o 75
- Wrought Iron Bridge Members. (Science Series No. 6o.)..16mo, o 75
Robson, I. H. Machine Drawing and Sketching. *2 00
Roebling, J. A. Long ana Short Span Railway Bridges 2500
Rogers, A. A Laboratory Guide of Industrial Chemistry.........8vo, 200
-Elements of Industrial Chemistry.................................. 2 mo , *3 00
- Manual of Industrial Chemistry *5 00
Rogers, F. Magnetism of Iron Vessels. (Science Series No. 30.) Iธ̋mo, o 75
Rohland, P. Colloidal and Crystalloidal State of Matter. Trans. by W. J. Britland and H. E. Potts . 12 mo , * 25
Rollinson, C. Alphabets Oblong, 12 mo , * 10
Rose, J. The Pattern-makers' Assistant 250
- Key to Engines and Engine-running 250
Rose, T. K. The Precious Metals. (Westminster Series.)8vo,
Rosenhain, W. Glass Manufacture. (Westminster Series.)......8vo,
_- Physical Metallurgy, An Introduction to. (Metallurgy Series.)

Rowan, F. J. Practical Physics of the Modern Steam-boiler......8vo, *3 00
—and Idell, F. E. Boiler Incrustation and Corrosion. (Science
Series No. 27.)... 16 mo , 075
Roxburgh, W. General Foundry Practice. (Westminster Series.) .8vo, ${ }^{*} 200$
Ruhmer, E. Wireless Telephony. Trans. by J. Erskine-Murray. .8vo, ${ }^{*} 450$
Kussell, A. Theory of Electric Cables and Networks *3 00
Rust, A. Practical Tables for Navigators and Aviators. 350
Rutley, F. Elements of Mineralogy * 25
Sandeman, E. A. Notes on the Manufacture of Earthenware. 350
Sanford, P. G. Nitro-explosives * 400
Saunders, C. H. Handbook of Practical Mechanics 00
Sayers, H. M. Brakes for Tram Cars ${ }_{1} 25$
Scheele, C. W. Chemical Essays * 250
Scheithauer, W. Shale Oils and Tars * 400
Scherer, R. Casein. Trans. by C. Salter. * 35
Schidrowitz, P. Rubber, Its Production and Industrial Uses. ${ }^{*} 600$
Schindler, K. Iron and Steel Construction Works ${ }^{*} 200$
Schmall, C. N. First Course in Analytic Geometry, Plane and Solid. i2mo, half leather, ${ }^{*} 175$——and Shack, S. M. Elements of Plane Geometry............izmo,
Schmeer, L. Flow of Water125
Schumann, F. A Manual of Heating and Ventilation....i2mo, leather, 50
Schwarz, E. H. L. Causal Geology. *3 00
Schweizer, V. Distillations of Resins 500
Scott, A. H. Reinforced Concrete in Practice. 200
Scott, W. W. Qualitative Analysis. A Laboratory Manual. New Edition. 250
- Standard Methods of Chemical Analysis *6 00
Scribner, J. M. Engineers' and Mechanics' Companion..I6mo, leather, 50
Scudder, H. Electrical Conductivity and Ionization Constants of Organic Compounds *3 00
Seamanship, Lectures on. 200
Seârle, A. B. Modern Brickmaking...................... 8 vo (In Press) ——Cement, Concrete and Bricks.. 8 vo, *6 50
Searle, G. M. "Sumners' Method." Condensed and Improved. (Science Series No. 124.) - 75
Seaton, A. E. Manual of Marine Engineering 800
Seaton, A. E., and Rounthwaite, H. M. Pocket-book of Marine Engi- neering...16mo, leather, 500
Seeligmann, T., Torrilhon, G. L., and Falconnet, H. India Rubber and Gutta Percha. Trans. by J. G. McIntosh................ . 8vo, *F ∞
Seidell, A. Solubilities of Inorganic and Organic Substances.... 8vo, 300
Seligman, R. Aluminum. (Metallurgy Series.)........ (In Press.)${ }^{10} 00$
-Railway Maintenance Engineering ${ }^{*} 250$
Senter. G. Outlines of Physical Chemistry *2 50
- Text-book of Inorganic Chemistry. ${ }^{*} 3$ oo
Sever, G. F. Electic Engineering Experiments * 10
Sever, G. F., and Townsend, F. Laboratory and Factory Tests in Elec- trical Engineering

 8v0,

Sewall, C. H. Wireless Telegraphy *2 0

- Lessons in Telegraphy * 100
Sewell, T. The Construction of Dynamos *3
Seyton, A. H. Fuel and Refractory Materials ${ }^{*} 25$
——Chemistry of the Materials of Engineering ${ }^{3} 00$
——Alloys (Non-Ferrous) * 300
Sexton, A. H., and Primrose, J. S. G. The Metallurgy of Iron and Steel. 8 vo , *6 50
Seymour, A. Modern Printing Inks. * 20
Shaw, Henry S. H. Mechanical Integrators. (Science Series No. 83.)
15 mo 75
Shaw, S. History of the Staffordshire Potteries............... . 8vo, 250- Chemistry of Compounds Used in Porcelain Manufacture....8vo,Shaw, T. R. Driving of Machine Tools...........................2n10,_-Precision Grinding Machines... . $\approx m$ m,Shaw, W. N. Forecasting Weather....................................... 8 vo ,Sheldon, S., and Hausmann, E. Direct Current Machines.........izmo,- Alternating Current Machines.....................................ımo,
Sheldon, S., and Hausmann, E. Electric Traction and Transmission
Engineering *2 50
*6 00
*200
500
3 50 250
*2 50
——Physical Laboratory Experiments, for Engineering Students. .8vo, * 25
Sherriff, F. F. Oil Merchants' Manual and Oil Trade Ready Reckoner,
8vo, 350Shields, J. E. Notes on Engineering Construction..................... 2 mo,Shreve, S. H. Strength of Bridges and Roofs........................8vo,Shunk, W. F. The Field Engineer..........................12m0, fabrikoid,
I 50
350Simmons, W. H., and Appleton, H. A. Handbook of Soap Manufacture,sio,Simmons, W. H., avid Mitchell, C. A. Edible Fats and Oils...... 8 vo,Simpson, G. The Naval Constructor......................i2mo, fabrikoid,
Simpson, W. Foundations................................8vo. (In Press.)Sinclair, A. Development of the Locomotive Engine. . 8vo, half leather,500
Sindall, R. W. Manufacture of Paper. (Westminster Series.).... 8vo, *2 00
Sindall, R. W., and Bacon, W. N. The Testing of Wood Pulp 8vo, *2 50
Sloane, T. O'C. Elementary Electrical Calculations. 2 mo, *2 00
Smallwood, J. C. Mechanical Laboratory Methods. (Van Nostrand's Textbooks.) .12mo, fabrikoid, *3 00
Smith, C. A. M. Handbook of Testing, MATERIALS 8vo, *2 50
Smith, C. A. M., and Warren, A. G. New Steam Tables * 25
Smith, C. F. Practical Alternating Currents and Testing * 30
——Practical Testing of Dynamos and Motors. 8vo, *3 00
Smith, F. E. Handbook of General Ir tricition for Mechanics . . . I2mo, I 50
Swith, G. C. Trinitrotoluenes and Mono- and Dinitrotoluenes, Their Manufacture and Properties.......................................2m0, 200
Smith, H. F. Minerals and the Microscope. 12mo, *I 25
Smith, T. C. Manufacture of Paint.................................... 8vo, * 5 оо
Smith, R. H. Princibles of Machine Worls 12 mo ,
- Advanced Machine Wnik *3 on
Smith, W. Chemistrv of Hat Manufacturing *3 50
Snell, A. T. Filectric Mntive Power * 400
Snow, W. G. Pocketbonk of Steam Heating and Ventilation. (In Press.)
Snow, W. G., and Nolan, T. Ventilation of Buildings. (Science SeriesNo 5) ..
Soddy, F. Radioactivity 8vo *3 00$0-5$
Solomon, M. Electric Lamps. (Westminster Series.) 8vo *2 00
Somerscales, A. N. Mechanics for Marine Engineers..............ımo, 200
_-Mechanical and Marine Engineering Science. 8vo, *5 oo
Sothern, J. W. The Marine Steam Turbine 80, *12 50
- Verbal Notes and Sketches for Marine Engineers 8\%), *12 50
Sothern, J. W., and Sothern, R. M. Elementary Mathematics forMarine Engineers...*I 50
- Simple Problems in Marine Engineering Design
400
Souster, E. G. W. Design of Factory and Industrial Buildings...8vo,
Southcombe, J. E. Chemistry of the Oil Industries. (Outlines of In- dustrial Chemistry.) *3 00
Soxhlet, D. H. Dyeing and Staining Marble. Trans. by A. Morris and H. Robson *2 50
Spangenburg, L. Fatigue of Metals. Translated by S. H. Shreve. (Science Series No. 23.) - 75
Specht, G. J., Hardy, A. S., McMaster, J. B., and Walling. Topographical Surveying. (Science Series No. 72.)..................... 5 mo, - 75
Spencer, A. S. Design of Steel-Framed Sheds. * 350
Speyers, C. L. Text-book of Physical Chemistry. 8vo, *I 50
Spiegel, L. Chemical Constitution and Physiological Action. (Trans. by C. Luedeking and A. C. Boylston.)....... I2mo, *I 25
Sprague, E. H. Hydraulics. 2 co
-_Elements of Graphic Statics 2 co
- Stability of Masonry 200
- Elementary Mathematics for Engineers 00
- Stability of Arches 00
- Strength of Structural Elements ○○
- Moving Loads by Influence Lines and Other Methods.......12mo, 00
Stahl, A. W. Transmission of Power. (Science Series No. 28.) . 16mo, Stahl, A. W., and Woods, A. T. Elementary Mechanismi2mo, *2 00
Staley, C., and Pierson, G. S. The Separate System of Sewerage. . .8vo, *3 00
Standage, H. C. Leatherworkers' Manual 50
——Sealing Waxes, Wafers, and Other Adhesives. 8vo,Stanley, H. Practical Applied Physics....................... (In Press.)
Stansbie, J. H. Iron and Steel. (Westminster Series.) 8vo, *2 00Steadman, F. M. Unit Photography..................................... mo,Stecher, G. E. Cork. Its Origin and Industrial Uses............ 2 mmo ,*2 00
I 00
Steinheil, A., and Voit, E. Applied Optics. .8vo,
Steinman, D. B. Suspension Bridges and Cantilevers. (Science Series No. 127.) 500 - 75
- Melan's Steel Arches and Suspension Bridges oo
Stevens, E. J. Field Telephones and Telegraphs. 20
Stevens, H. P. Paper Mill Chemist...................I6mo (In Press.)Stevens, J. S. Theory of Measurements................................I2mo,I 25
Stevenson, J. L. Blast-Furnace Calculations i2mo, leather, *2 00
Stewart, G. Modern Steam Traps. 12 mo , I 75
Stiles, A. Tables for Field Engineers I 00
Stodola, A. Steam Turbines. Trans. by L. C. Loewenstein 5 oo
Stone, H. The Timbers of Commerce 350
Stopes, M. Ancient Plants 8vo, *2 oo
- The Study of Plant Life 8vo, *2 00
Sudborough, J. J., and James, T. C. Practical Organic Chemistry. . i2mo, *2 00
Suffling, E. R. Treatise on the Art of Glass Painting .3vo, * 30
28 D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG
Sullivan, T. V., and Underwood, N. Testing and Valuation of Build-ing and Engineering Materiais. (In Press.)
Sur, F. J. S. Oil Prospecting and Extracting. 8vo,
* 100
Svenson, C. L. Handbock on Piping. 8vo, 8vo,
-_ Essentials of Drafting 8vo,
- Essentials of Drafting 150
Swan, K. Patents, Designs and Trade Marks. (Westminster Series.). 8vo, *2 00
Swinburne, J., Wordingham, C. H., and Martin, T. C. Electric Currents.
(Science Series No. ıog.)....................................... 6 mo , - 75
Swoope, C. W. Lessons in Practical Electricity I2mo, *2 00
Tailfer, L. Bleaching Linen and Cotton Yarn and Fabrics 700
Tate, J. S. Surcharged and Different Forms of Retaining-walls. (Science Series No. 7.). 6 6mo, - 75
Taylor, F. N. Small Water Supplies. 50
- Masonry in Civil Engineering. .8vo, 250
Templeton, W. Practical Mechanic's Workshop Companion.
I2mo, morocco, 200
Tenney, E. H. Test Methods for Steam Power Plants. (Van Nostrand's Textbooks.) izmo, *2 50
Terry, H. L. India Rubber and its Manufacture. (Westminster Series.) 8vo, *2 00
Thayer, H. R. Structural Design. 8vo.
Vol. I. Elements of Structural Design *2 or
Vol. II. Design of Simple Structures ${ }^{*} 400$Vol. III. Design of Advanced Structures (In Preparation.)
Foundations and Masonry.................... (In Prcparation.)
Thiess, J. B., and Joy, G. A. Toll Telephone Practice 8vo, *3 50
Thom, C., and Jones, W. H. Telegraphic Connections. . . .oblong, 12 mo , I 50
Thomas, C. W. Paper-makers' Handbook (In Press.)
Thomas, J. B. Strength of Ships... . . . 8vo, 250
Thomas, Robt. G. Applied Calculus. ress.)
Thompson, A. B. Oil Fields of Russia 4to, *7 50
-_Oil Field Development 750
Thompson, S. P. Dynamo Electric Machines. (Science Series No. 75.) 16 mo , 075
Thompson, W. P. Handbook of Patent Law of All Countries 16mo, I 50
Thomson, G. Modern Sanitary Engineering I2mo, 00
Thomson, G. S. Milk and Cream Testing $12 \mathrm{mo}, *_{2} 25$
- Modern Sanitary Engineering, House Drainage, etc 8vo, *3 00
Thornley, T. Cotton Combing Machines 8vo,
-Cotton Waste 8vo, *3 50
- Cotton Spinning. 8vo.
First Yeari 50
Second Year 50
Third Year * 250
Thurso, J. W. Modern Turbine Practice 8vo, *4 00
Tidy, C. Meymott. Treatment of Sewage. (Science Series No. 94.)
16 mo , $0 \% 5$
Tillmans, J. Water Purification and Sewage Disposal. Trans. by Hugh S. Taylor. . 8vo, *, no
Tinney, W. H. Gold-mining Machinery. *3 00
Titherley, A. W. Laboratory Course of Organic Chemistry Svo, *2 00
Tizard, H. T. IndicatorsToch, M. Chemistry and Technology of Paints...................8vo, *4 oo
- Materials for Permanent Painting 12 mo,*4 00Tod, J., and McGibbon, W. C. Marine Engineers' Board of TradeExaminations ... 8 vo , * $_{2}$ oo
Todd, J., and Whall, W. B. Practical Seamanship................... 8 vo , δ ००
Tonge, J. Coal. (Westminster Series.) *2 00
Townsend, F. Alternating Current Engineering * 75
Townsend, J. S. Ionization of Gases by Collision 8vo, *i 25
Transactions of the American Institute of Chemical Engineers, 8vo. Vol. I. to X., rgu8-ı917.................................. . . 8vo, each, 500
Traverse Tables. (Science Series No. Ir5.) - 75
I 00Treiber, E. Foundry Machinery. Trans. by C. Salter.............. $\mathrm{I}_{2} \mathrm{mo}$,
2 คo
Trinks, W., and Housum, C. Shaft Governors. (Science Series No. 122.)
Trowbridge, W. P. Tu-bine Wheels. (Science Series No. 44.)..r6mo, 075 075
Tucker, J. H. A Manual of Sugar Analysis 350
Tunner, P. A. Treatise on Roll-turning. Trans. by J. B. Pearse.
8vo, eext and folio atlas, 1000
Turnbull, Jr., J., and Robinson, S. W A Treatise on the Compound Steam-engine. (Science Ser'es No. 8.).................16mo, - 75
Turner, H. Worsted Spinners' Handbojk. *3 0
Turrill, S. M. Elementary Course in Perspective * 25
Twyford, H. B. Purchasing $8 \mathrm{vo}, *_{3}$ oo
- Storing, Its Economic Aspects and Proper Methods. 350
Underhill, C. R. Solenoids, Electromagnets and Electromagnetic Wind-
ings.. *2 00
Underwood, N., and Sullivan, T. V. Chemistry and Technology of Printing Inks ... 8vo, *3 00
Urquhart, J. W. Electro-plating 200
- Electrotyping 200
Usborne, P. O. G. Design of Simple Steel Bridges 8vo, *4 oo
Vacher, F. Food Inspector's Handbook 12mo,
Van Nostrand's Chemical Annual. Fourth issue rgx.fabrikoid, izmo, *3 00
-_ Year Book of Mechanical Engineering Data. . (In Iress.)
Van Wagenen, T. F. Manual of Hydraulic Mining 100
Vega, Baron Von. Logarithmic Tables. 250
Vincent, C. Ammonia and its Compounds. Trans. by M. J. Salte: . 8vo, *2 50
Volk, C. Haulage and Winding Appliances *4 00
Von Georgievics, G. Chemical Technology of Textile Fibres. Trans. by C. Salter 8vo,
- Chemistry of Dyestuffs. Trans by C. Salter. 8vo.
(Nere Edition in Preparation.)
Vo'se, G. L. Graphic Method for Solving Certain Questions in Arithmetic and Aloebra. (Science Series No. 16.)...................16mo, 075
Vosmaer, A. Ozone. ${ }_{2} 50$
Wabner, R. Ventilation in Mines. Trans. by C. Salter *5 00
Wade, E. J. Secondary Batteries...................................... . . 8vo, ${ }^{*} 400$
Wadmore, T. M. Elementary Chemical Theory 12 mo ,
Wagner, E. Preserving Fruits, Vegetables, and Meat..........12mo, *2 50
Wagner, J. B. A Treatise on the Natural and Artificial Processes of Wood Seasoning. 300
Waldram, P. J. Principles of Structural Mechanics 2 mo , *3 00
Walker, F. Dynamo Building. (Science Series No. 98.) - 75
Walker, J. Organic Chemistry for Students of Medicine *3 0
Walker, S. F. Steam Boilers, Engines and Turbines. 300
——Refrigeration, Heating and Ventilation on Shipboard. ${ }^{*} 250$
—— Electricity in Mining. * 450
- Electric Wiring and Fitting 250
Wallis-Tayler, A. J. Bearings and Lubrication *I 50
- Aerial or Wire Ropeways *3 00
-- Preservation of Wood 400
——Refrigeration, Cold Storage and Ice Making 550
- Sugar Machinery 12mo, *2 50
Walsh, J. J. Chemistry and Physics of Mining and Mine Ventilation, ${ }^{*} 00$
Wanklyn, J. A. Water Analysis 200
Wansbrough, W. D. The A B C of the Differential Calculus....irmo, * 50
-_Slide Valves. * 200
Waring, Jr., G. E. Sanitary Conditions. (Science Series No. 3r.).16mo, - 75
- Sewerage and Land Drainage *6 00
_ Modern Methods of Sewage Disposal 200
- How to Drain a House I 25
Warnes, A. R. Coal Tar Distillation ${ }^{*} 500$
Warren, F. D. Handbook on Reinforced Concrete ${ }^{2} 50$
Watkins, A. Photography. (Westminster Series.) *3 50
Watson, E. P. Small Engines and Boilers. 125
Watt, A. Electro-plating and Electro-refining of Metals * 450
- Electro-metallurgy I 00
- The Art of Soap Making. 300
- Leather Manufacture ${ }^{*} 400$
- Paper-Making 300
Webb, H. L. Guide to the Testing of Insulated Wires and Cables. x2mo, 100
Webber, W. H. Y. Town Gas. (Westminster Series.) * 200
Wegmann, Edward. Conveyance and Distribution of Water for Water Supply 500
Weisbach, J. A Manual of Theoretical Mechanics. 8vo,
sheep, *7 50
Weisbach, J., and Herrmann, G. Mechanics of Air Machinery. * 35
Wells, M. B. Steel Bridge Designing. ${ }^{*} 25$
Wells, Robt. Ornamental Confectionery 300
Weston, E. B. Loss of Head Due to Friction of Water in Pipes...12mo, ${ }^{*} 50$
Wheatley, 0. Ornamental Cement Work *2 25
Whipple, S. An Elementary and Practical Treatise on Bridge Building.8vo,
White, C. H. Methods of Metallurgical Analysis. (Van Nostrand's Textbooks.) 250
D. VAN NOSTRAND CO.'S SHORT TITLE CATALOG 3 I
White, G. F. Qualitative Chemical Analysis............................ 12 mo , * 25
White, G. T. Hootned Gearıng. 200 200
White, H. J. Oil Tank Steamers. I 50
Whitelaw, John. Surveying 450
Whittaker, C. M. The Apprication of the Coal Tar Dyestuffs...8vo, 300
Widmer, E. J. Military Balloons....................................... 8 ve, 300
Wilcox, R. M. Cantilever Bridges. (Science Series No. 25.)...16m0, 75
Wilda, H. Steam Turbines. Irans. by C. Salter.................rmmo, 200
-_Cranes and Hoists. Trans. by C. Salter........................ 2 mo , 200
Wilkinson, H. D. Submarine Cable Laying and Repairing.......8vo, 600
Williamson, J. Surveying. 300
Williamson, R. S. On the Use of the Barometer 1500
_- Practical Tables in Neteorology and Hypsometery............4to, 50
Wilson, F. J., and Heilbron, I. M. Chemical Theory and Calculations. 125
Wilson, J. F. Essentials of Electrical Engineering........ 8vo, 250
Wmperis, H. E. Internal Combustion Engise....................... 8 vo, *3 00
——Application of Power to Road Transport............................ mo, I 50
_- Primer of Internal Combustion Engine............................ mm ,Winchell, N. H., and A. N. Elements of Optical Mineralogy.8vo,*3 50
Winslow, A Stadia Surveying. (Science Series No. 77.)......... 6 mo , - 75
Wisser, Lieut. J. P. Explosive Materials. (Science Series No. 70.) 16 mo , - 75
- Modern Gun Cotton. (Science Series No. 89.) 16 mo , - 75
Wolff, C. E. Modern Locomotive Practice. *4 20
Wood, De V. Luminiferous Aether. (Science Series No. 85.) ..16mo, - 75
Wood, J. K. Chemistry of Dyeing. (Chemical Monographs No. 2.) 12mo, *: 0
Worden, E. C. The Nitrocellulose Industry. Two Volumes
—Technology of Cellulose Esters. In io volumes. 8vo.
Vol. VIII. Cellulose Acetate *5 00
Wren, H. Organometallic Compounds of Zinc and Magnesiur.. (Chem- ical Monographs No. 1.).......................................21no, * 100
Wright, A. C. Analysis of Oils and Allied Substances............ 8 vo,
- Simple Method for Testing Painters' Materials.*3 50Wright, F. W. Design of a Condensing Plant.* 250
* 50
Wright, H. E. Handy Book for Brewers. *6 oo
Wright, J. Testing, Fault Finding, etc., for Wiremen. (Installation *0 50
Wright, T. W. Elements of Mechanics. * 20
Wright, T. W., and Hayford, J. F. Adjustment of Observations... 8vo, *3 oo
Wynne, W. E., and Sparagen, W. Yandbook of Engineering Mathe- matics *2 о
Yoder, J. H., and Wharen, G. B. Locomotive Valves and Valve Gears, 8 vo , ${ }^{*} 4$ oo
Young, J. E. Electrical Testing for Telegraph Engineers 8vo,
Young, R. B. The Banket. 8vo,
Youngson. Slide Valve and Valve Gears. 8vo, 350
Zahner, R. Transmission of Power. (Science Series No. 40.)..16mo,
Zeidler, J., and Lustgarten, J. Electric Arc Lamps............... . 8vo, *2 00
Zeuner, A. Technical Thermodynamics. Trans. by J. F. Klein. TwoVolumes.8vo,*8 00
Zimmer, G. F. Mechanical Handling and Storing of Materials....4to, * 1250
——Mechanical Handling of Material and Its National Importance
During and After the War.................................4to, Zipser, J. Textile Raw Materials. Trans. by C. Salter........... 8vo, 400Zur Nedden, F. Engineering Workshop Machines and Processes. Trans.by J. A. Davenport$8 \mathrm{vo}, *_{2} 00$

D. Van Nostrand Company

are prepared to supply, either from their complete stock or at short notice,

Any Technical or

 Scientific BookIn addition to publishing a very large and varied number of Scientific and Engineering Books D. Van Nostrand Company have on hand the largest assortment in the United States of such books isscied by American and foreign puolishers.

All inquiries are cheerfully and carefully answered and complete catalogs sent free on request.
25 Park Place - . . New York

[^0]: Picture Drawing
 Isometric Drawing - Isometric and Non-Isometric Lines - Angles - Positions of the Axes - Construction for Circles - Oblique Drawing.

[^1]: * Published by Harper and Bros., New York.

